Publikation:

The Gridfit Algorithm : An Efficient and Effective Approach to Visualizing Large Amounts of Spatial Data

Lade...
Vorschaubild

Dateien

The_Gridfit_Algorithm.pdf
The_Gridfit_Algorithm.pdfGröße: 566.43 KBDownloads: 764

Datum

1998

Autor:innen

Herrmann, Annemarie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings Visualization '98 (Cat. No.98CB36276). IEEE, 1998, pp. 181-188,. ISBN 0-8186-9176-X. Available under: doi: 10.1109/VISUAL.1998.745301

Zusammenfassung

In a large number of applications, data is collected and referenced by their spatial location. Visualizing large amounts of spatially referenced data on a limited-size display often results in poor visualizations due to the high degree of overplotting of neighboring data points. In this paper, we introduce a new approach to visualizing large amounts of spatially referenced data. The basic idea is to intelligently use the unoccupied pixels of the display instead of overplotting data points. After formally describing the problem, we present two solutions which are based on (1) placing overlapping data points on the nearest unoccupied pixel and (2) shifting data points along a screen-filling curve (e.g., Hilbert-curve). We then develop a more sophisticated approach called Gridfit, which is based on a hierarchical partitioning of the data space. We evaluate all three approaches with respect to their efficiency and effectiveness, and show the superiority of the Gridfit approach. For measuring the effectiveness, in addition to comparing the resulting visualizations we introduce mathematical effectiveness criteria measuring properties of the generated visualizations such as distance- and positionpreservation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visualizing Large Data Sets, Visualizing Spatially Referenced Data, Visualizing Geographical Data, Interfaces to Databases

Konferenz

Visualization '98, Research Triangle Park, NC, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Annemarie HERRMANN, 1998. The Gridfit Algorithm : An Efficient and Effective Approach to Visualizing Large Amounts of Spatial Data. Visualization '98. Research Triangle Park, NC, USA. In: Proceedings Visualization '98 (Cat. No.98CB36276). IEEE, 1998, pp. 181-188,. ISBN 0-8186-9176-X. Available under: doi: 10.1109/VISUAL.1998.745301
BibTex
@inproceedings{Keim1998Gridf-5904,
  year={1998},
  doi={10.1109/VISUAL.1998.745301},
  title={The Gridfit Algorithm : An Efficient and Effective Approach to Visualizing Large Amounts of Spatial Data},
  isbn={0-8186-9176-X},
  publisher={IEEE},
  booktitle={Proceedings Visualization '98 (Cat. No.98CB36276)},
  pages={181--188,},
  author={Keim, Daniel A. and Herrmann, Annemarie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5904">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5904/1/The_Gridfit_Algorithm.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5904"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5904/1/The_Gridfit_Algorithm.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>1998</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dcterms:available>
    <dcterms:bibliographicCitation>First publ. in (rev. version): Proceedings Visualization '98, October 18 - 23, 1998, Research Triangle Park, North Carolina / Ed. by David Ebert ... New York: Association for Computing Machinery, 1998, pp. 181-188</dcterms:bibliographicCitation>
    <dc:contributor>Herrmann, Annemarie</dc:contributor>
    <dcterms:title>The Gridfit Algorithm : An Efficient and Effective Approach to Visualizing Large Amounts of Spatial Data</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dc:date>
    <dcterms:abstract xml:lang="eng">In a large number of applications, data is collected and referenced by their spatial location. Visualizing large amounts of spatially referenced data on a limited-size display often results in poor visualizations due to the high degree of overplotting of neighboring data points. In this paper, we introduce a new approach to visualizing large amounts of spatially referenced data. The basic idea is to intelligently use the unoccupied pixels of the display instead of overplotting data points. After formally describing the problem, we present two solutions which are based on (1) placing overlapping data points on the nearest unoccupied pixel and (2) shifting data points along a screen-filling curve (e.g., Hilbert-curve). We then develop a more sophisticated approach called Gridfit, which is based on a hierarchical partitioning of the data space. We evaluate all three approaches with respect to their efficiency and effectiveness, and show the superiority of the Gridfit approach. For measuring the effectiveness, in addition to comparing the resulting visualizations we introduce mathematical effectiveness criteria measuring properties of the generated visualizations such as distance- and positionpreservation.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Herrmann, Annemarie</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen