Publikation: Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Applied Mathematics & Optimization. Springer. 2021, 83(2), pp. 639-667. ISSN 0095-4616. eISSN 1432-0606. Available under: doi: 10.1007/s00245-019-09558-1
Zusammenfassung
This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversarial networks that showcase the generality and effectiveness of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ECKSTEIN, Stephan, Michael KUPPER, 2021. Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks. In: Applied Mathematics & Optimization. Springer. 2021, 83(2), pp. 639-667. ISSN 0095-4616. eISSN 1432-0606. Available under: doi: 10.1007/s00245-019-09558-1BibTex
@article{Eckstein2021Compu-53512, year={2021}, doi={10.1007/s00245-019-09558-1}, title={Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks}, number={2}, volume={83}, issn={0095-4616}, journal={Applied Mathematics & Optimization}, pages={639--667}, author={Eckstein, Stephan and Kupper, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53512"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-28T11:50:30Z</dc:date> <dcterms:abstract xml:lang="eng">This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversarial networks that showcase the generality and effectiveness of the approach.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kupper, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2021</dcterms:issued> <dc:creator>Kupper, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-28T11:50:30Z</dcterms:available> <dc:creator>Eckstein, Stephan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53512"/> <dc:contributor>Eckstein, Stephan</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja