Publikation: Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial, nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe et al., Phys. Rev. E 78, 026106 (2008)]. In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (χ) made up of nonaffine displacements. Several properties of χ may be rationalized for the harmonic solid using a simple “cell model” calculation. Furthermore the scaling behavior of the probability distribution of the noise field (χ) is studied. We find that for any inverse temperature β, spring constant f, density ρ and coarse-graining length Λ the probability distribution can be obtained from a master curve of the scaling variable X=χβf/ρΛ2.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FRANZRAHE, Kerstin, Peter NIELABA, S. SENGUPTA, 2010. Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise. In: Physical Review E. 2010, 82(1). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.016112BibTex
@article{Franzrahe2010Coars-12449, year={2010}, doi={10.1103/PhysRevE.82.016112}, title={Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise}, number={1}, volume={82}, issn={1539-3755}, journal={Physical Review E}, author={Franzrahe, Kerstin and Nielaba, Peter and Sengupta, S.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12449"> <dcterms:bibliographicCitation>Publ. in: Physical Review E 82 (2010), 016112</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:13:55Z</dc:date> <dc:creator>Franzrahe, Kerstin</dc:creator> <dcterms:issued>2010</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:13:55Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Nielaba, Peter</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Franzrahe, Kerstin</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sengupta, S.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Sengupta, S.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12449"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Nielaba, Peter</dc:creator> <dcterms:abstract xml:lang="eng">In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial, nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe et al., Phys. Rev. E 78, 026106 (2008)]. In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (χ) made up of nonaffine displacements. Several properties of χ may be rationalized for the harmonic solid using a simple “cell model” calculation. Furthermore the scaling behavior of the probability distribution of the noise field (χ) is studied. We find that for any inverse temperature β, spring constant f, density ρ and coarse-graining length Λ the probability distribution can be obtained from a master curve of the scaling variable X=χβf/ρΛ2.</dcterms:abstract> <dcterms:title>Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise</dcterms:title> </rdf:Description> </rdf:RDF>