Publikation:

Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review E. 2010, 82(1). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.016112

Zusammenfassung

In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial, nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe et al., Phys. Rev. E 78, 026106 (2008)]. In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (χ) made up of nonaffine displacements. Several properties of χ may be rationalized for the harmonic solid using a simple “cell model” calculation. Furthermore the scaling behavior of the probability distribution of the noise field (χ) is studied. We find that for any inverse temperature β, spring constant f, density ρ and coarse-graining length Λ the probability distribution can be obtained from a master curve of the scaling variable X=χβf/ρΛ2.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FRANZRAHE, Kerstin, Peter NIELABA, S. SENGUPTA, 2010. Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise. In: Physical Review E. 2010, 82(1). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.016112
BibTex
@article{Franzrahe2010Coars-12449,
  year={2010},
  doi={10.1103/PhysRevE.82.016112},
  title={Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise},
  number={1},
  volume={82},
  issn={1539-3755},
  journal={Physical Review E},
  author={Franzrahe, Kerstin and Nielaba, Peter and Sengupta, S.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12449">
    <dcterms:bibliographicCitation>Publ. in: Physical Review E 82 (2010), 016112</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:13:55Z</dc:date>
    <dc:creator>Franzrahe, Kerstin</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:13:55Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Nielaba, Peter</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Franzrahe, Kerstin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sengupta, S.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sengupta, S.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12449"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Nielaba, Peter</dc:creator>
    <dcterms:abstract xml:lang="eng">In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial, nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe et al., Phys. Rev. E 78, 026106 (2008)]. In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (χ) made up of nonaffine displacements. Several properties of χ may be rationalized for the harmonic solid using a simple “cell model” calculation. Furthermore the scaling behavior of the probability distribution of the noise field (χ) is studied. We find that for any inverse temperature β, spring constant f, density ρ and coarse-graining length Λ the probability distribution can be obtained from a master curve of the scaling variable X=χβf/ρΛ2.</dcterms:abstract>
    <dcterms:title>Coarse-graining microscopic strains in a harmonic, two-dimensional solid : elasticity, nonlocal susceptibilities, and nonaffine noise</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen