Collaborative and AI-aided Exam Question Generation using Wikidata in Education

Lade...
Vorschaubild
Dateien
Scharpf_2-1k664ty9q5yq40.pdf
Scharpf_2-1k664ty9q5yq40.pdfGröße: 494.79 KBDownloads: 78
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
KAFFEE, Lucie-Aimée, ed., Simon RAZNIEWSKI, ed., Gabriel AMARAL, ed. and others. Wikidata’22 : Wikidata workshop at ISWC 2022. Aachen: RWTH Aachen, 2022. CEUR Workshop Proceedings. 3262. eISSN 1613-0073
Zusammenfassung

Since the COVID-19 outbreak, the use of digital learning or education platforms has substantially increased. Teachers now digitally distribute homework and provide exercise questions. In both cases, teachers need to develop novel and individual questions continuously. This process can be very time-consuming and should be facilitated and accelerated both through exchange with other teachers and by using Artificial Intelligence (AI) capabilities. To address this need, we propose a multilingual Wikimedia framework that allows for collaborative worldwide teacher knowledge engineering and subsequent AI-aided question generation, test, and correction. As a proof of concept, we present »PhysWikiQuiz«, a physics question generation and test engine. Our system (hosted by Wikimedia at https://physwikiquiz.wmflabs.org) retrieves physics knowledge from the open community-curated database Wikidata. It can generate questions in different variations and verify answer values and units using a Computer Algebra System (CAS). We evaluate the performance on a public benchmark dataset at each stage of the system workflow. For an average formula with three variables, the system can generate and correct up to 300 questions for individual students, based on a single formula concept name as input by the teacher.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
3rd Wikidata Workshop 2022 (virtual), 24. Okt. 2022
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHARPF, Philipp, Moritz SCHUBOTZ, Andreas SPITZ, André GREINER-PETTER, Bela GIPP, 2022. Collaborative and AI-aided Exam Question Generation using Wikidata in Education. 3rd Wikidata Workshop 2022 (virtual), 24. Okt. 2022. In: KAFFEE, Lucie-Aimée, ed., Simon RAZNIEWSKI, ed., Gabriel AMARAL, ed. and others. Wikidata’22 : Wikidata workshop at ISWC 2022. Aachen: RWTH Aachen, 2022. CEUR Workshop Proceedings. 3262. eISSN 1613-0073
BibTex
@inproceedings{Scharpf2022Colla-59778,
  year={2022},
  title={Collaborative and AI-aided Exam Question Generation using Wikidata in Education},
  number={3262},
  publisher={RWTH Aachen},
  address={Aachen},
  series={CEUR Workshop Proceedings},
  booktitle={Wikidata’22 : Wikidata workshop at ISWC 2022},
  editor={Kaffee, Lucie-Aimée and Razniewski, Simon and Amaral, Gabriel},
  author={Scharpf, Philipp and Schubotz, Moritz and Spitz, Andreas and Greiner-Petter, André and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59778">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T10:35:34Z</dc:date>
    <dc:creator>Scharpf, Philipp</dc:creator>
    <dc:contributor>Scharpf, Philipp</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59778/1/Scharpf_2-1k664ty9q5yq40.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59778"/>
    <dcterms:title>Collaborative and AI-aided Exam Question Generation using Wikidata in Education</dcterms:title>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:abstract xml:lang="eng">Since the COVID-19 outbreak, the use of digital learning or education platforms has substantially increased. Teachers now digitally distribute homework and provide exercise questions. In both cases, teachers need to develop novel and individual questions continuously. This process can be very time-consuming and should be facilitated and accelerated both through exchange with other teachers and by using Artificial Intelligence (AI) capabilities. To address this need, we propose a multilingual Wikimedia framework that allows for collaborative worldwide teacher knowledge engineering and subsequent AI-aided question generation, test, and correction. As a proof of concept, we present »PhysWikiQuiz«, a physics question generation and test engine. Our system (hosted by Wikimedia at https://physwikiquiz.wmflabs.org) retrieves physics knowledge from the open community-curated database Wikidata. It can generate questions in different variations and verify answer values and units using a Computer Algebra System (CAS). We evaluate the performance on a public benchmark dataset at each stage of the system workflow. For an average formula with three variables, the system can generate and correct up to 300 questions for individual students, based on a single formula concept name as input by the teacher.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59778/1/Scharpf_2-1k664ty9q5yq40.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:contributor>Greiner-Petter, André</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T10:35:34Z</dcterms:available>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dc:creator>Greiner-Petter, André</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen