Publikation:

Modelling collective motion based on the principle of agency : General framework and the case of marching locusts

Lade...
Vorschaubild

Dateien

Ried_2-1l24te612z1jt1.pdf
Ried_2-1l24te612z1jt1.pdfGröße: 1.93 MBDownloads: 287

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PloS one. 2019, 14(2), e0212044. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0212044

Zusammenfassung

Collective phenomena are studied in a range of contexts-from controlling locust plagues to efficiently evacuating stadiums-but the central question remains: how can a large number of independent individuals form a seemingly perfectly coordinated whole? Previous attempts to answer this question have reduced the individuals to featureless particles, assumed particular interactions between them and studied the resulting collective dynamics. While this approach has provided useful insights, it cannot guarantee that the assumed individual-level behaviour is accurate, and, moreover, does not address its origin-that is, the question of why individuals would respond in one way or another. We propose a new approach to studying collective behaviour, based on the concept of learning agents: individuals endowed with explicitly modelled sensory capabilities, an internal mechanism for deciding how to respond to the sensory input and rules for modifying these responses based on past experience. This detailed modelling of individuals favours a more natural choice of parameters than in typical swarm models, which minimises the risk of spurious dependences or overfitting. Most notably, learning agents need not be programmed with particular responses, but can instead develop these autonomously, allowing for models with fewer implicit assumptions. We illustrate these points with the example of marching locusts, showing how learning agents can account for the phenomenon of density-dependent alignment. Our results suggest that learning agent-based models are a powerful tool for studying a broader class of problems involving collective behaviour and animal agency in general.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RIED, Katja, Thomas MÜLLER, Hans J. BRIEGEL, 2019. Modelling collective motion based on the principle of agency : General framework and the case of marching locusts. In: PloS one. 2019, 14(2), e0212044. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0212044
BibTex
@article{Ried2019Model-45322,
  year={2019},
  doi={10.1371/journal.pone.0212044},
  title={Modelling collective motion based on the principle of agency : General framework and the case of marching locusts},
  number={2},
  volume={14},
  journal={PloS one},
  author={Ried, Katja and Müller, Thomas and Briegel, Hans J.},
  note={Article Number: e0212044}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45322">
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dc:contributor>Müller, Thomas</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45322/1/Ried_2-1l24te612z1jt1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T15:23:56Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Müller, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T15:23:56Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Ried, Katja</dc:contributor>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dcterms:abstract xml:lang="eng">Collective phenomena are studied in a range of contexts-from controlling locust plagues to efficiently evacuating stadiums-but the central question remains: how can a large number of independent individuals form a seemingly perfectly coordinated whole? Previous attempts to answer this question have reduced the individuals to featureless particles, assumed particular interactions between them and studied the resulting collective dynamics. While this approach has provided useful insights, it cannot guarantee that the assumed individual-level behaviour is accurate, and, moreover, does not address its origin-that is, the question of why individuals would respond in one way or another. We propose a new approach to studying collective behaviour, based on the concept of learning agents: individuals endowed with explicitly modelled sensory capabilities, an internal mechanism for deciding how to respond to the sensory input and rules for modifying these responses based on past experience. This detailed modelling of individuals favours a more natural choice of parameters than in typical swarm models, which minimises the risk of spurious dependences or overfitting. Most notably, learning agents need not be programmed with particular responses, but can instead develop these autonomously, allowing for models with fewer implicit assumptions. We illustrate these points with the example of marching locusts, showing how learning agents can account for the phenomenon of density-dependent alignment. Our results suggest that learning agent-based models are a powerful tool for studying a broader class of problems involving collective behaviour and animal agency in general.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Ried, Katja</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Modelling collective motion based on the principle of agency : General framework and the case of marching locusts</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45322/1/Ried_2-1l24te612z1jt1.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45322"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen