POD-Based Mixed-Integer Optimal Control of the Heat Equation

dc.contributor.authorBachmann, Freya
dc.contributor.authorBeermann, Dennis
dc.contributor.authorLu, Jianjie
dc.contributor.authorVolkwein, Stefan
dc.date.accessioned2017-05-30T14:34:09Z
dc.date.available2017-05-30T14:34:09Z
dc.date.issued2017eng
dc.description.abstractIn the present paper an optimal control problem governed by the heat equation is considered, where continuous as well as discrete controls are involved. To obtain the discrete controls the branch-and-bound method is utilized, where in each node a relaxed control constrained optimal control problem has to be solved involving only continuous controls. However, the solutions to many relaxed optimal control problems have to be computed numerically. For that reason model-order reduction is applied to speed-up the branch-and-bound method. In this work the method of proper orthogonal decomposition (POD) is used. A posteriori error estimation in each node ensures that the calculated solutions are sufficiently accurate. Numerical experiments illustrate the efficiency of the proposed strategy.eng
dc.description.versionsubmittedeng
dc.identifier.ppn490050034
dc.identifier.urihttps://kops.uni-konstanz.de/handle/123456789/39073
dc.language.isoengeng
dc.rightsterms-of-use
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectOptimal control, mixed integer programming, proper orthogonal decomposition, branch-and-bound methodeng
dc.subject.ddc510eng
dc.titlePOD-Based Mixed-Integer Optimal Control of the Heat Equationeng
dc.typeINPROCEEDINGSeng
dspace.entity.typePublication
kops.date.conferenceEnd2016-11-10eng
kops.date.conferenceStart2016-11-07eng
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-0-408645
kops.location.conferencePariseng
kops.title.conferenceIHP Me3 : Recent Developments in Numerical Methods for Model Reductioneng
source.contributor.editorRozza, Gianluigi
source.flag.etalEditortrueeng
source.identifier.eissn1573-7691eng
source.identifier.issn0885-7474eng
source.publisherSpringereng
source.relation.ispartofseriesJournal of Scientific Computingeng
source.titleIHP Me3 : Recent Developments in Numerical Methods for Model Reductioneng
temp.submission.doi
temp.submission.source

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Bachmann_0-408645.pdf
Größe:
6.93 MB
Format:
Adobe Portable Document Format
Beschreibung:
Bachmann_0-408645.pdf
Bachmann_0-408645.pdfGröße: 6.93 MBDownloads: ?

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
3.88 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:
license.txt
license.txtGröße: 3.88 KBDownloads: ?

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2019-04-09 15:24:54
1*
2017-05-30 14:34:09
* Ausgewählte Version