Publikation: Advancing the Growth of GaN on AlScN and AlYN by Metal–Organic Chemical Vapor Deposition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: 05K22VL1
Institutionen der Bundesrepublik Deutschland: 05KS7UM1
Institutionen der Bundesrepublik Deutschland: 05K10UMA
Institutionen der Bundesrepublik Deutschland: 05KS7WW3
Institutionen der Bundesrepublik Deutschland: 05K10WW1
Institutionen der Bundesrepublik Deutschland: 05K13WW1
Deutsche Forschungsgemeinschaft (DFG): CRC1261
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
High electron mobility transistors (HEMT) based on Al1‐xScxN/GaN and Al1‐xYxN/GaN heterostructures promise increased device performance and reliability due to the high sheet charge carrier density and the possibility to grow strain‐free layers on GaN. Metal–organic chemical vapor deposition (MOCVD) offers high throughput, high structural quality, and good electrical characteristics. The growth of GaN layers on Al1‐xScxN and Al1‐xYxN is challenging, but at the same time crucial as passivation or for multichannel structures. GaN is observed to grow three‐dimensionally on these nitrides, exposing not‐passivated areas to surface oxidation. In this work, growth of 2–20 nm‐thick, two‐dimensional GaN layers is demonstrated. Optimization of growth conditions is enabled by understanding island formation on the atomic scale by aberration corrected scanning transmission electron microscopy (STEM) and hard X‐ray photoelectron spectroscopy (HAXPES). Increased growth temperature, an AlN interlayer, low supersaturation conditions and the carrier gas are found to be key to enhance Ga adatom mobility. Growth of single crystalline GaN layers on Al1‐xScxN and Al1‐xYxN is unlocked and prevents oxidation of the underlying layers. Few nanometer thick GaN caps allow for depositing the gate metallization directly on the cap, whereas thicker ones allow for the growth of heterostructures for normally‐off devices and multichannel structures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STREICHER, Isabel, Niklas WOLFF, Teresa DUARTE, Oliver REHM, Patrik STRAŇÁK, Lutz KIRSTE, Mario PRESCHER, Xuyun GUO, Martina MÜLLER, Stefano LEONE, 2025. Advancing the Growth of GaN on AlScN and AlYN by Metal–Organic Chemical Vapor Deposition. In: Advanced Physics Research. Wiley. 2025, 4(9), e2500035. ISSN 2751-1200. eISSN 2751-1200. Verfügbar unter: doi: 10.1002/apxr.202500035BibTex
@article{Streicher2025-09Advan-74144,
title={Advancing the Growth of GaN on AlScN and AlYN by Metal–Organic Chemical Vapor Deposition},
year={2025},
doi={10.1002/apxr.202500035},
number={9},
volume={4},
issn={2751-1200},
journal={Advanced Physics Research},
author={Streicher, Isabel and Wolff, Niklas and Duarte, Teresa and Rehm, Oliver and Straňák, Patrik and Kirste, Lutz and Prescher, Mario and Guo, Xuyun and Müller, Martina and Leone, Stefano},
note={Article Number: e2500035}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74144">
<dc:creator>Duarte, Teresa</dc:creator>
<dcterms:issued>2025-09</dcterms:issued>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dc:creator>Wolff, Niklas</dc:creator>
<dc:contributor>Leone, Stefano</dc:contributor>
<dcterms:abstract>High electron mobility transistors (HEMT) based on Al<sub>1‐x</sub>Sc<sub>x</sub>N/GaN and Al<sub>1‐x</sub>Y<sub>x</sub>N/GaN heterostructures promise increased device performance and reliability due to the high sheet charge carrier density and the possibility to grow strain‐free layers on GaN. Metal–organic chemical vapor deposition (MOCVD) offers high throughput, high structural quality, and good electrical characteristics. The growth of GaN layers on Al<sub>1‐x</sub>Sc<sub>x</sub>N and Al<sub>1‐x</sub>Y<sub>x</sub>N is challenging, but at the same time crucial as passivation or for multichannel structures. GaN is observed to grow three‐dimensionally on these nitrides, exposing not‐passivated areas to surface oxidation. In this work, growth of 2–20 nm‐thick, two‐dimensional GaN layers is demonstrated. Optimization of growth conditions is enabled by understanding island formation on the atomic scale by aberration corrected scanning transmission electron microscopy (STEM) and hard X‐ray photoelectron spectroscopy (HAXPES). Increased growth temperature, an AlN interlayer, low supersaturation conditions and the carrier gas are found to be key to enhance Ga adatom mobility. Growth of single crystalline GaN layers on Al<sub>1‐x</sub>Sc<sub>x</sub>N and Al<sub>1‐x</sub>Y<sub>x</sub>N is unlocked and prevents oxidation of the underlying layers. Few nanometer thick GaN caps allow for depositing the gate metallization directly on the cap, whereas thicker ones allow for the growth of heterostructures for normally‐off devices and multichannel structures.</dcterms:abstract>
<dc:creator>Prescher, Mario</dc:creator>
<dc:contributor>Rehm, Oliver</dc:contributor>
<dc:contributor>Streicher, Isabel</dc:contributor>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74144/1/Streicher_2-1l9rccfzte7v79.pdf"/>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74144/1/Streicher_2-1l9rccfzte7v79.pdf"/>
<dc:contributor>Duarte, Teresa</dc:contributor>
<dc:contributor>Wolff, Niklas</dc:contributor>
<dc:creator>Straňák, Patrik</dc:creator>
<dc:creator>Rehm, Oliver</dc:creator>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-25T12:32:54Z</dc:date>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74144"/>
<dcterms:title>Advancing the Growth of GaN on AlScN and AlYN by Metal–Organic Chemical Vapor Deposition</dcterms:title>
<dc:contributor>Müller, Martina</dc:contributor>
<dc:creator>Kirste, Lutz</dc:creator>
<dc:contributor>Kirste, Lutz</dc:contributor>
<dc:creator>Guo, Xuyun</dc:creator>
<dc:language>eng</dc:language>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-25T12:32:54Z</dcterms:available>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Leone, Stefano</dc:creator>
<dc:contributor>Prescher, Mario</dc:contributor>
<dc:contributor>Guo, Xuyun</dc:contributor>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Müller, Martina</dc:creator>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:creator>Streicher, Isabel</dc:creator>
<dc:contributor>Straňák, Patrik</dc:contributor>
</rdf:Description>
</rdf:RDF>