Publikation:

Structures Associated with Real Closed Fields and the Axiom of Choice

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016, 23(3), pp. 401-419. ISSN 1370-1444

Zusammenfassung

An integer part I of a real closed field K is a discretely ordered subring of K with minimal positive element 1 such that, for every x∈K, there is i∈I with i≤x<i+1. Mourgues and Ressayre showed in [MR] that every real closed field has an integer part. Their construction implicitly uses the Axiom of Choice. We show that AC is actually necessary to obtain the result by constructing a transitive model of ZF which contains a real closed field without an integer part. Then we analyze some cases where the Axiom of Choice is not necessary for obtaining an integer part. On the way, we demonstrate that a class of questions containing the question whether the Axiom of Choice is necessary for the proof of a certain ZFC-theorem is algorithmically undecidable. We further apply the methods to show that it is independent of ZF whether every real closed field has a value group section and a residue field section. This also sheds some light on the possibility to effectivize constructions of integer parts and value group sections which was considered e.g. in [DKKL] and [KL]

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARL, Merlin, 2016. Structures Associated with Real Closed Fields and the Axiom of Choice. In: Bulletin of the Belgian Mathematical Society - Simon Stevin. 2016, 23(3), pp. 401-419. ISSN 1370-1444
BibTex
@article{Carl2016Struc-37559,
  year={2016},
  title={Structures Associated with Real Closed Fields and the Axiom of Choice},
  number={3},
  volume={23},
  issn={1370-1444},
  journal={Bulletin of the Belgian Mathematical Society - Simon Stevin},
  pages={401--419},
  author={Carl, Merlin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37559">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Structures Associated with Real Closed Fields and the Axiom of Choice</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-17T10:28:34Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-17T10:28:34Z</dc:date>
    <dcterms:abstract xml:lang="eng">An integer part I of a real closed field K is a discretely ordered subring of K with minimal positive element 1 such that, for every x∈K, there is i∈I with i≤x&lt;i+1. Mourgues and Ressayre showed in [MR] that every real closed field has an integer part. Their construction implicitly uses the Axiom of Choice. We show that AC is actually necessary to obtain the result by constructing a transitive model of ZF which contains a real closed field without an integer part. Then we analyze some cases where the Axiom of Choice is not necessary for obtaining an integer part. On the way, we demonstrate that a class of questions containing the question whether the Axiom of Choice is necessary for the proof of a certain ZFC-theorem is algorithmically undecidable. We further apply the methods to show that it is independent of ZF whether every real closed field has a value group section and a residue field section. This also sheds some light on the possibility to effectivize constructions of integer parts and value group sections which was considered e.g. in [DKKL] and [KL]</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37559"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Carl, Merlin</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen