Markov chain aggregation and its applications to combinatorial reaction networks

Lade...
Vorschaubild
Dateien
Ganguly_2-1m5873un0wrnm3.pdf
Ganguly_2-1m5873un0wrnm3.pdfGröße: 337.37 KBDownloads: 442
Datum
2014
Autor:innen
Ganguly, Arnab
Koeppl, Heinz
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Mathematical Biology. 2014, 69(3), pp. 767-797. ISSN 0303-6812. eISSN 1432-1416. Available under: doi: 10.1007/s00285-013-0738-7
Zusammenfassung

We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Markov chain aggregation; Rule-based modeling of reaction networks; Site-graphs
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GANGULY, Arnab, Tatjana PETROV, Heinz KOEPPL, 2014. Markov chain aggregation and its applications to combinatorial reaction networks. In: Journal of Mathematical Biology. 2014, 69(3), pp. 767-797. ISSN 0303-6812. eISSN 1432-1416. Available under: doi: 10.1007/s00285-013-0738-7
BibTex
@article{Ganguly2014-09Marko-42122,
  year={2014},
  doi={10.1007/s00285-013-0738-7},
  title={Markov chain aggregation and its applications to combinatorial reaction networks},
  number={3},
  volume={69},
  issn={0303-6812},
  journal={Journal of Mathematical Biology},
  pages={767--797},
  author={Ganguly, Arnab and Petrov, Tatjana and Koeppl, Heinz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42122">
    <dc:contributor>Ganguly, Arnab</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-20T12:40:08Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-20T12:40:08Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42122/1/Ganguly_2-1m5873un0wrnm3.pdf"/>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dc:contributor>Koeppl, Heinz</dc:contributor>
    <dcterms:title>Markov chain aggregation and its applications to combinatorial reaction networks</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42122"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42122/1/Ganguly_2-1m5873un0wrnm3.pdf"/>
    <dc:creator>Ganguly, Arnab</dc:creator>
    <dc:creator>Koeppl, Heinz</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.</dcterms:abstract>
    <dcterms:issued>2014-09</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet