Publikation:

Visual analytics for concept exploration in subspaces of patient groups : Making sense of complex datasets with the Doctor-in-the-loop

Lade...
Vorschaubild

Dateien

Hund_0-345369.pdf
Hund_0-345369.pdfGröße: 1.84 MBDownloads: 505

Datum

2016

Autor:innen

Böhm, Dominic
Sturm, Werner
Sedlmair, Michael
Ullrich, Torsten
Majnaric, Ljiljana
Holzinger, Andreas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Brain Informatics. 2016, 3(4), pp. 233-247. ISSN 2198-4018. eISSN 2198-4026. Available under: doi: 10.1007/s40708-016-0043-5

Zusammenfassung

Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUMENSCHEIN, Michael, Dominic BÖHM, Werner STURM, Michael SEDLMAIR, Tobias SCHRECK, Torsten ULLRICH, Daniel A. KEIM, Ljiljana MAJNARIC, Andreas HOLZINGER, 2016. Visual analytics for concept exploration in subspaces of patient groups : Making sense of complex datasets with the Doctor-in-the-loop. In: Brain Informatics. 2016, 3(4), pp. 233-247. ISSN 2198-4018. eISSN 2198-4026. Available under: doi: 10.1007/s40708-016-0043-5
BibTex
@article{Blumenschein2016-12Visua-34862,
  year={2016},
  doi={10.1007/s40708-016-0043-5},
  title={Visual analytics for concept exploration in subspaces of patient groups : Making sense of complex datasets with the Doctor-in-the-loop},
  number={4},
  volume={3},
  issn={2198-4018},
  journal={Brain Informatics},
  pages={233--247},
  author={Blumenschein, Michael and Böhm, Dominic and Sturm, Werner and Sedlmair, Michael and Schreck, Tobias and Ullrich, Torsten and Keim, Daniel A. and Majnaric, Ljiljana and Holzinger, Andreas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34862">
    <dcterms:title>Visual analytics for concept exploration in subspaces of patient groups : Making sense of complex datasets with the Doctor-in-the-loop</dcterms:title>
    <dc:contributor>Ullrich, Torsten</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2016-12</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-25T13:54:39Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Holzinger, Andreas</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:contributor>Holzinger, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34862/1/Hund_0-345369.pdf"/>
    <dc:creator>Sturm, Werner</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Majnaric, Ljiljana</dc:creator>
    <dc:contributor>Majnaric, Ljiljana</dc:contributor>
    <dcterms:abstract xml:lang="eng">Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.</dcterms:abstract>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-25T13:54:39Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34862/1/Hund_0-345369.pdf"/>
    <dc:creator>Böhm, Dominic</dc:creator>
    <dc:creator>Ullrich, Torsten</dc:creator>
    <dc:contributor>Böhm, Dominic</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sturm, Werner</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34862"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen