Publikation: A parabolic cross-diffusion system for granular materials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A cross-diffusion system of parabolic equations for the relative concentration and the dynamic repose angle of a mixture of two different granular materials in a long rotating drum is studied. The main feature of the system is the ability to describe the axial segregation of the two granular components. The existence of global-in-time weak solutions is shown by using entropy-type inequalities and approximation arguments. The uniqueness of solutions is proved if cross-diffusion is not too large. Furthermore, we show that in the non-segregating case, the transient solutions converge exponentially fast to the constant steady-state as time tends to infinity. Finally, numerical simulations show the long-time coarsening of the segregation bands in the drum.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GALIANO, Gonzalo, Ansgar JÜNGEL, Julián VELASCO, 2002. A parabolic cross-diffusion system for granular materialsBibTex
@unpublished{Galiano2002parab-6386, year={2002}, title={A parabolic cross-diffusion system for granular materials}, author={Galiano, Gonzalo and Jüngel, Ansgar and Velasco, Julián} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6386"> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Galiano, Gonzalo</dc:creator> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:22Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6386"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:22Z</dc:date> <dcterms:title>A parabolic cross-diffusion system for granular materials</dcterms:title> <dc:language>eng</dc:language> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Velasco, Julián</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6386/1/preprint_177.pdf"/> <dc:creator>Jüngel, Ansgar</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6386/1/preprint_177.pdf"/> <dc:contributor>Galiano, Gonzalo</dc:contributor> <dcterms:issued>2002</dcterms:issued> <dc:creator>Velasco, Julián</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">A cross-diffusion system of parabolic equations for the relative concentration and the dynamic repose angle of a mixture of two different granular materials in a long rotating drum is studied. The main feature of the system is the ability to describe the axial segregation of the two granular components. The existence of global-in-time weak solutions is shown by using entropy-type inequalities and approximation arguments. The uniqueness of solutions is proved if cross-diffusion is not too large. Furthermore, we show that in the non-segregating case, the transient solutions converge exponentially fast to the constant steady-state as time tends to infinity. Finally, numerical simulations show the long-time coarsening of the segregation bands in the drum.</dcterms:abstract> </rdf:Description> </rdf:RDF>