Publikation:

A probabilistic extension for the DDA algorithm

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1996

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of International Conference on Neural Networks (ICNN'96). IEEE, 1996, pp. 341-346. ISBN 0-7803-3210-5. Available under: doi: 10.1109/ICNN.1996.548915

Zusammenfassung

Many algorithms to train radial basis function (RBF) networks have already been proposed. Most of them, however, concentrate on building function approximators and only few specialized algorithms are known that concentrate on RBFs for classification. They are based on heuristics that focus on finding areas where relatively few (or no) conflicts occur, but do not try to approximate the underlying probability distribution function (PDF) of the data. In this paper an extension for an already existing constructive algorithm for RBF networks is introduced. The new method uses the dynamic decay adjustment (DDA) algorithm to find conflict free areas and builds more appropriate PDFs inside each such zone. On a dataset which was generated using Gaussian distributions it is demonstrated that this method builds almost optimal classifiers that compare very well with the theoretical Bayes classifier. It is shown, however, that the generalization capability of such networks does not compare favourable to the DDA itself.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Conference on Neural Networks (ICNN'96), Washington, DC, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., 1996. A probabilistic extension for the DDA algorithm. International Conference on Neural Networks (ICNN'96). Washington, DC, USA. In: Proceedings of International Conference on Neural Networks (ICNN'96). IEEE, 1996, pp. 341-346. ISBN 0-7803-3210-5. Available under: doi: 10.1109/ICNN.1996.548915
BibTex
@inproceedings{Berthold1996proba-24207,
  year={1996},
  doi={10.1109/ICNN.1996.548915},
  title={A probabilistic extension for the DDA algorithm},
  isbn={0-7803-3210-5},
  publisher={IEEE},
  booktitle={Proceedings of International Conference on Neural Networks (ICNN'96)},
  pages={341--346},
  author={Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24207">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>The 1996 IEEE international conference on neural networks, June 3-6, 1996, Sheraton Washington Hotel, Washington, DC, USA; Vol. 1 / [Benjamin W. Wah, general chair]. - Piscataway, NJ : IEEE Service Center, 1996. - S. 341-346. - ISBN 0-7803-3210-5</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1996</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Many algorithms to train radial basis function (RBF) networks have already been proposed. Most of them, however, concentrate on building function approximators and only few specialized algorithms are known that concentrate on RBFs for classification. They are based on heuristics that focus on finding areas where relatively few (or no) conflicts occur, but do not try to approximate the underlying probability distribution function (PDF) of the data. In this paper an extension for an already existing constructive algorithm for RBF networks is introduced. The new method uses the dynamic decay adjustment (DDA) algorithm to find conflict free areas and builds more appropriate PDFs inside each such zone. On a dataset which was generated using Gaussian distributions it is demonstrated that this method builds almost optimal classifiers that compare very well with the theoretical Bayes classifier. It is shown, however, that the generalization capability of such networks does not compare favourable to the DDA itself.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>A probabilistic extension for the DDA algorithm</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:19:00Z</dcterms:available>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:19:00Z</dc:date>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24207"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen