Publikation: A probabilistic extension for the DDA algorithm
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many algorithms to train radial basis function (RBF) networks have already been proposed. Most of them, however, concentrate on building function approximators and only few specialized algorithms are known that concentrate on RBFs for classification. They are based on heuristics that focus on finding areas where relatively few (or no) conflicts occur, but do not try to approximate the underlying probability distribution function (PDF) of the data. In this paper an extension for an already existing constructive algorithm for RBF networks is introduced. The new method uses the dynamic decay adjustment (DDA) algorithm to find conflict free areas and builds more appropriate PDFs inside each such zone. On a dataset which was generated using Gaussian distributions it is demonstrated that this method builds almost optimal classifiers that compare very well with the theoretical Bayes classifier. It is shown, however, that the generalization capability of such networks does not compare favourable to the DDA itself.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., 1996. A probabilistic extension for the DDA algorithm. International Conference on Neural Networks (ICNN'96). Washington, DC, USA. In: Proceedings of International Conference on Neural Networks (ICNN'96). IEEE, 1996, pp. 341-346. ISBN 0-7803-3210-5. Available under: doi: 10.1109/ICNN.1996.548915BibTex
@inproceedings{Berthold1996proba-24207, year={1996}, doi={10.1109/ICNN.1996.548915}, title={A probabilistic extension for the DDA algorithm}, isbn={0-7803-3210-5}, publisher={IEEE}, booktitle={Proceedings of International Conference on Neural Networks (ICNN'96)}, pages={341--346}, author={Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24207"> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>The 1996 IEEE international conference on neural networks, June 3-6, 1996, Sheraton Washington Hotel, Washington, DC, USA; Vol. 1 / [Benjamin W. Wah, general chair]. - Piscataway, NJ : IEEE Service Center, 1996. - S. 341-346. - ISBN 0-7803-3210-5</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>1996</dcterms:issued> <dcterms:abstract xml:lang="eng">Many algorithms to train radial basis function (RBF) networks have already been proposed. Most of them, however, concentrate on building function approximators and only few specialized algorithms are known that concentrate on RBFs for classification. They are based on heuristics that focus on finding areas where relatively few (or no) conflicts occur, but do not try to approximate the underlying probability distribution function (PDF) of the data. In this paper an extension for an already existing constructive algorithm for RBF networks is introduced. The new method uses the dynamic decay adjustment (DDA) algorithm to find conflict free areas and builds more appropriate PDFs inside each such zone. On a dataset which was generated using Gaussian distributions it is demonstrated that this method builds almost optimal classifiers that compare very well with the theoretical Bayes classifier. It is shown, however, that the generalization capability of such networks does not compare favourable to the DDA itself.</dcterms:abstract> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>A probabilistic extension for the DDA algorithm</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:19:00Z</dcterms:available> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:19:00Z</dc:date> <dc:creator>Berthold, Michael R.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24207"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>