Publikation: Compressible Euler equations with second sound : Asymptotics of discontinuous solutions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FANG, Beixiang, Reinhard RACKE, 2013. Compressible Euler equations with second sound : Asymptotics of discontinuous solutions. In: Journal of Mathematical Analysis and Applications. 2013, 401(1), pp. 9-28. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2012.10.068BibTex
@article{Fang2013Compr-20103.2, year={2013}, doi={10.1016/j.jmaa.2012.10.068}, title={Compressible Euler equations with second sound : Asymptotics of discontinuous solutions}, number={1}, volume={401}, issn={0022-247X}, journal={Journal of Mathematical Analysis and Applications}, pages={9--28}, author={Fang, Beixiang and Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20103.2"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/20103.2"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2013</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Racke, Reinhard</dc:creator> <dc:creator>Fang, Beixiang</dc:creator> <dc:contributor>Fang, Beixiang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dcterms:available> <dcterms:abstract xml:lang="eng">We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.</dcterms:abstract> <dc:contributor>Racke, Reinhard</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dc:date> <dcterms:title>Compressible Euler equations with second sound : Asymptotics of discontinuous solutions</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>