Publikation:

Compressible Euler equations with second sound : Asymptotics of discontinuous solutions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Fang, Beixiang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Analysis and Applications. 2013, 401(1), pp. 9-28. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2012.10.068

Zusammenfassung

We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FANG, Beixiang, Reinhard RACKE, 2013. Compressible Euler equations with second sound : Asymptotics of discontinuous solutions. In: Journal of Mathematical Analysis and Applications. 2013, 401(1), pp. 9-28. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2012.10.068
BibTex
@article{Fang2013Compr-20103.2,
  year={2013},
  doi={10.1016/j.jmaa.2012.10.068},
  title={Compressible Euler equations with second sound : Asymptotics of discontinuous solutions},
  number={1},
  volume={401},
  issn={0022-247X},
  journal={Journal of Mathematical Analysis and Applications},
  pages={9--28},
  author={Fang, Beixiang and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20103.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/20103.2"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2013</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:creator>Fang, Beixiang</dc:creator>
    <dc:contributor>Fang, Beixiang</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.</dcterms:abstract>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dc:date>
    <dcterms:title>Compressible Euler equations with second sound : Asymptotics of discontinuous solutions</dcterms:title>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-03-19 12:59:11
2012-08-15 08:58:45
* Ausgewählte Version