Publikation:

The Levenberg-Marquardt Method and its Implementation in Python

Lade...
Vorschaubild

Dateien

Kaltenbach_2-1ofyba49ud2jr5.pdf
Kaltenbach_2-1ofyba49ud2jr5.pdfGröße: 979.12 KBDownloads: 6653

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The Levenberg-Marquardt method is a widely used algorithm applied to solve nonlinear least-squares problems. In this thesis, the Levenberg-Marquardt method is implemented in Python as a trust-region approach based on the works of Moré [Mor78] and Nocedal and Wright [NW06]. After a detailed description of the method, the Python code is presented. The Levenberg-Marquardt method is then tested on seven least-squares problems, including small-residual and large-residual problems as well as a poorly scaled one. In particular, the combination of large residuals and poor scaling makes the method slow, as it needs a large number of iterations to converge. Afterwards, the test results are compared to line search methods, such as the Gauss-Newton method. Regarding the test problems, the Levenberg-Marquardt method performed as the most robust algorithm.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KALTENBACH, Marius, 2022. The Levenberg-Marquardt Method and its Implementation in Python [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Kaltenbach2022Leven-59650,
  year={2022},
  title={The Levenberg-Marquardt Method and its Implementation in Python},
  address={Konstanz},
  school={Universität Konstanz},
  author={Kaltenbach, Marius}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59650">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-09T09:38:03Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59650/3/Kaltenbach_2-1ofyba49ud2jr5.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:title>The Levenberg-Marquardt Method and its Implementation in Python</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-09T09:38:03Z</dc:date>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">The Levenberg-Marquardt method is a widely used algorithm applied to solve nonlinear least-squares problems. In this thesis, the Levenberg-Marquardt method is implemented in Python as a trust-region approach based on the works of Moré [Mor78] and Nocedal and Wright [NW06]. After a detailed description of the method, the Python code is presented. The Levenberg-Marquardt method is then tested on seven least-squares problems, including small-residual and large-residual problems as well as a poorly scaled one. In particular, the combination of large residuals and poor scaling makes the method slow, as it needs a large number of iterations to converge. Afterwards, the test results are compared to line search methods, such as the Gauss-Newton method. Regarding the test problems, the Levenberg-Marquardt method performed as the most robust algorithm.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59650"/>
    <dc:creator>Kaltenbach, Marius</dc:creator>
    <dc:contributor>Kaltenbach, Marius</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59650/3/Kaltenbach_2-1ofyba49ud2jr5.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2022
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen