Publikation:

Learning through creativity : how creativity can help machine learning achieving deeper understanding

Lade...
Vorschaubild

Dateien

Moruzzi_2-1oiciuzv2z0q94.pdf
Moruzzi_2-1oiciuzv2z0q94.pdfGröße: 446.06 KBDownloads: 296

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Rifl – Rivista Italiana di Filosofia del Linguaggio. Università della Calabria. 2020, 14(2), pp. 35-46. ISSN 2036-6728. Available under: doi: 10.4396/AISB201904

Zusammenfassung

In this paper, I address the difficult task of analysing the nature of creativity by suggesting a more objective way of defining it. In particular, I propose a minimal account of creativity as autonomous problem-solving process. This definition is aimed at providing a baseline that researchers working in different fields can agree on and that can then be refined on a case by case basis. Developing our insight on the nature of creativity is increasingly necessary in the light of recent developments in the field of Artificial Intelligence. In the second part of the paper, I discuss how an investigation on the main features of human creativity can support the advancement of machine learning models in their current areas of weakness, such as intuition, originality, innovation, and flexibility. I suggest how methods such as modelling the human brain or simulation can be useful to extract the main mechanisms underlying creative processes and to translate them to machine learning applications. This can eventually aid both the development of machine learning systems that achieve a deeper and more intuitive understanding and our exploration of human creativity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

creativity, artificial intelligence, autonomy, problem-solving, machine learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MORUZZI, Caterina, 2020. Learning through creativity : how creativity can help machine learning achieving deeper understanding. In: Rifl – Rivista Italiana di Filosofia del Linguaggio. Università della Calabria. 2020, 14(2), pp. 35-46. ISSN 2036-6728. Available under: doi: 10.4396/AISB201904
BibTex
@article{Moruzzi2020-12-30Learn-52833,
  year={2020},
  doi={10.4396/AISB201904},
  title={Learning through creativity : how creativity can help machine learning achieving deeper understanding},
  number={2},
  volume={14},
  issn={2036-6728},
  journal={Rifl – Rivista Italiana di Filosofia del Linguaggio},
  pages={35--46},
  author={Moruzzi, Caterina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52833">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Moruzzi, Caterina</dc:contributor>
    <dcterms:issued>2020-12-30</dcterms:issued>
    <dc:creator>Moruzzi, Caterina</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52833/1/Moruzzi_2-1oiciuzv2z0q94.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Learning through creativity : how creativity can help machine learning achieving deeper understanding</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52833/1/Moruzzi_2-1oiciuzv2z0q94.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-15T10:28:21Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-15T10:28:21Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:abstract xml:lang="eng">In this paper, I address the difficult task of analysing the nature of creativity by suggesting a more objective way of defining it. In particular, I propose a minimal account of creativity as autonomous problem-solving process. This definition is aimed at providing a baseline that researchers working in different fields can agree on and that can then be refined on a case by case basis. Developing our insight on the nature of creativity is increasingly necessary in the light of recent developments in the field of Artificial Intelligence. In the second part of the paper, I discuss how an investigation on the main features of human creativity can support the advancement of machine learning models in their current areas of weakness, such as intuition, originality, innovation, and flexibility. I suggest how methods such as modelling the human brain or simulation can be useful to extract the main mechanisms underlying creative processes and to translate them to machine learning applications. This can eventually aid both the development of machine learning systems that achieve a deeper and more intuitive understanding and our exploration of human creativity.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52833"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen