Publikation:

DiPS : A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BALLARINI, Paolo, ed., Hind CASTEL, ed., Ioannis DIMITRIOU, ed. and others. Performance Engineering and Stochastic Modeling : 17th European Workshop, EPEW 2021, and 26th International Conference, ASMTA 2021, Virtual Event, December 9–10 and December 13–14, 2021, Proceedings. Cham: Springer, 2021, pp. 79-95. Lecture Notes in Computer Science. 13104. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-91824-8. Available under: doi: 10.1007/978-3-030-91825-5_5

Zusammenfassung

We present a tool for inferring the parameters of a Discrete-time Markov chain (DTMC) with respect to properties written in probabilistic temporal logic (PCTL) informed by data observations. The tool combines, in a modular and user-friendly way, the existing methods and tools for parameter synthesis of DTMCs. On top of this, the tool implements several hybrid methods for the exploration of the parameter space based on utilising the intermediate results of parametric model checking – the symbolic representation of properties’ satisfaction in the form of rational functions. These methods are combined to support three different parameter exploration methods: (i) optimisation, (ii) parameter synthesis, (iii) Bayesian parameter inference. Each of the available methods makes a different trade-off between scalability and inference quality, which can be chosen by the user depending on the application context. In this paper, we present the implementation, the main features of the tool, and we evaluate its performance on several benchmarks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

EPEW: European Workshop on Performance Engineering; ASMTA: International Conference on Analytical and Stochastic Modeling Techniques and Applications, 9. Dez. 2021 - 14. Dez. 2021, virtual event
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAJNAL, Matej, David ŠAFRÁNEK, Tatjana PETROV, 2021. DiPS : A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications. EPEW: European Workshop on Performance Engineering; ASMTA: International Conference on Analytical and Stochastic Modeling Techniques and Applications. virtual event, 9. Dez. 2021 - 14. Dez. 2021. In: BALLARINI, Paolo, ed., Hind CASTEL, ed., Ioannis DIMITRIOU, ed. and others. Performance Engineering and Stochastic Modeling : 17th European Workshop, EPEW 2021, and 26th International Conference, ASMTA 2021, Virtual Event, December 9–10 and December 13–14, 2021, Proceedings. Cham: Springer, 2021, pp. 79-95. Lecture Notes in Computer Science. 13104. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-91824-8. Available under: doi: 10.1007/978-3-030-91825-5_5
BibTex
@inproceedings{Hajnal2021DataI-56906,
  year={2021},
  doi={10.1007/978-3-030-91825-5_5},
  title={DiPS : A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications},
  number={13104},
  isbn={978-3-030-91824-8},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Performance Engineering and Stochastic Modeling : 17th European Workshop, EPEW 2021, and 26th International Conference, ASMTA 2021, Virtual Event, December 9–10 and December 13–14, 2021, Proceedings},
  pages={79--95},
  editor={Ballarini, Paolo and Castel, Hind and Dimitriou, Ioannis},
  author={Hajnal, Matej and Šafránek, David and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56906">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Šafránek, David</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56906"/>
    <dcterms:title>DiPS : A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:23:26Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We present a tool for inferring the parameters of a Discrete-time Markov chain (DTMC) with respect to properties written in probabilistic temporal logic (PCTL) informed by data observations. The tool combines, in a modular and user-friendly way, the existing methods and tools for parameter synthesis of DTMCs. On top of this, the tool implements several hybrid methods for the exploration of the parameter space based on utilising the intermediate results of parametric model checking – the symbolic representation of properties’ satisfaction in the form of rational functions. These methods are combined to support three different parameter exploration methods: (i) optimisation, (ii) parameter synthesis, (iii) Bayesian parameter inference. Each of the available methods makes a different trade-off between scalability and inference quality, which can be chosen by the user depending on the application context. In this paper, we present the implementation, the main features of the tool, and we evaluate its performance on several benchmarks.</dcterms:abstract>
    <dc:creator>Hajnal, Matej</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Šafránek, David</dc:creator>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:23:26Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Hajnal, Matej</dc:contributor>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen