Publikation: How to Poll Runoff Elections
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a polling strategy to predict and analyze runoff elections using the 2017 French presidential race as an empirical case. This strategy employs rejective probability sampling to identify a small sample of polling stations that is balanced with respect to past election results. We then survey the voters’ candidate evaluations in first-round exit polls. We poststratify the voter sample to first-round election returns to account for nonresponse and coverage issues, and impute missing candidate evaluations to emulate campaign learning. Next, the votes for eliminated competitors are redistributed according to their supporters’ lower-order preferences. Finally, the predictions are validated against official results and other polls. We end with a discussion of the advantages and limitations of this approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SELB, Peter, Sascha GÖBEL, Romain LACHAT, 2020. How to Poll Runoff Elections. In: Public Opinion Quarterly. Oxford University Press. 2020, 84(3), pp. 776-787. ISSN 0033-362X. eISSN 1537-5331. Available under: doi: 10.1093/poq/nfaa039BibTex
@article{Selb2020Runof-53401, year={2020}, doi={10.1093/poq/nfaa039}, title={How to Poll Runoff Elections}, number={3}, volume={84}, issn={0033-362X}, journal={Public Opinion Quarterly}, pages={776--787}, author={Selb, Peter and Göbel, Sascha and Lachat, Romain}, note={Correction: https://doi.org/10.1093/poq/nfab019} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53401"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:title>How to Poll Runoff Elections</dcterms:title> <dc:creator>Selb, Peter</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-19T09:07:16Z</dcterms:available> <dc:contributor>Selb, Peter</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53401/1/Selb_2-1p2jof9lldnp26.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53401"/> <dc:language>eng</dc:language> <dc:creator>Lachat, Romain</dc:creator> <dc:contributor>Lachat, Romain</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53401/1/Selb_2-1p2jof9lldnp26.pdf"/> <dc:creator>Göbel, Sascha</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We present a polling strategy to predict and analyze runoff elections using the 2017 French presidential race as an empirical case. This strategy employs rejective probability sampling to identify a small sample of polling stations that is balanced with respect to past election results. We then survey the voters’ candidate evaluations in first-round exit polls. We poststratify the voter sample to first-round election returns to account for nonresponse and coverage issues, and impute missing candidate evaluations to emulate campaign learning. Next, the votes for eliminated competitors are redistributed according to their supporters’ lower-order preferences. Finally, the predictions are validated against official results and other polls. We end with a discussion of the advantages and limitations of this approach.</dcterms:abstract> <dc:contributor>Göbel, Sascha</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-19T09:07:16Z</dc:date> </rdf:Description> </rdf:RDF>