Publikation: A pivot-based index structure for combination of feature vectors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a novel indexing schema that provides efficient nearest-neighbor queries in multimedia databases consisting of objects described by multiple feature vectors. The benefits of the simultaneous usage of several (statically or dynamically) weighted feature vectors with respect to retrieval effectiveness have been previously demonstrated. Support for efficient multi-feature vector similarity queries is an open problem, as existing indexing methods do not support dynamically parameterized distance functions. We present a solution for this problem relying on a combination of several pivot-based metric indices. We define the index structure, present algorithms for performing nearest-neighbor queries on these structures, and demonstrate the feasibility by experiments conducted on two real-world image databases. The experimental results show a significant performance improvement over existing access methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSTOS CÁRDENAS, Benjamin Eugenio, Daniel A. KEIM, Tobias SCHRECK, 2005. A pivot-based index structure for combination of feature vectors. The 2005 ACM symposium on Applied computing - SAC '05. Santa Fe, New Mexico, 13. März 2005 - 17. März 2005. In: Proceedings of the 2005 ACM symposium on Applied computing - SAC '05. New York, New York, USA: ACM Press, 2005, pp. 1180-1184. ISBN 1-58113-964-0. Available under: doi: 10.1145/1066677.1066945BibTex
@inproceedings{BustosCardenas2005pivot-5583, year={2005}, doi={10.1145/1066677.1066945}, title={A pivot-based index structure for combination of feature vectors}, isbn={1-58113-964-0}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 2005 ACM symposium on Applied computing - SAC '05}, pages={1180--1184}, author={Bustos Cárdenas, Benjamin Eugenio and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5583"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5583/1/A_pivot_based_index_structure_for_combination_of_feature_vectors.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5583"/> <dcterms:abstract xml:lang="eng">We present a novel indexing schema that provides efficient nearest-neighbor queries in multimedia databases consisting of objects described by multiple feature vectors. The benefits of the simultaneous usage of several (statically or dynamically) weighted feature vectors with respect to retrieval effectiveness have been previously demonstrated. Support for efficient multi-feature vector similarity queries is an open problem, as existing indexing methods do not support dynamically parameterized distance functions. We present a solution for this problem relying on a combination of several pivot-based metric indices. We define the index structure, present algorithms for performing nearest-neighbor queries on these structures, and demonstrate the feasibility by experiments conducted on two real-world image databases. The experimental results show a significant performance improvement over existing access methods.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:35Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5583/1/A_pivot_based_index_structure_for_combination_of_feature_vectors.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2005</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:35Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: Applied computing 2005: the 20th Annual ACM Symposium on Applied Computing ; proceedings of the 2005 ACM Symposium on Applied Computing, Santa Fe, New Mexico, USA, March 13 - 17, 2005 / ed. Hisham Haddad ... New York, NY : Association for Computing Machinery, 2005, pp. 1180-1184</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>A pivot-based index structure for combination of feature vectors</dcterms:title> </rdf:Description> </rdf:RDF>