Publikation: To Know or Not To Know? : Analyzing Self-Consistency of Large Language Models under Ambiguity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One of the major aspects contributing to the striking performance of large language models (LLMs) is the vast amount of factual knowledge accumulated during pre-training. Yet, many LLMs suffer from self-inconsistency, which raises doubts about their trustworthiness and reliability. This paper focuses on entity type ambiguity, analyzing the proficiency and consistency of state-of-the-art LLMs in applying factual knowledge when prompted with ambiguous entities. To do so, we propose an evaluation protocol that disentangles knowing from applying knowledge, and test state-of-the-art LLMs on 49 ambiguous entities. Our experiments reveal that LLMs struggle with choosing the correct entity reading, achieving an average accuracy of only 85%, and as low as 75% with underspecified prompts. The results also reveal systematic discrepancies in LLM behavior, showing that while the models may possess knowledge, they struggle to apply it consistently, exhibit biases toward preferred readings, and display self-inconsistencies. This highlights the need to address entity ambiguity in the future for more trustworthy LLMs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEDOVA, Anastasiia, Robert LITSCHKO, Diego FRASSINELLI, Benjamin ROTH, Barbara PLANK, 2024. To Know or Not To Know? : Analyzing Self-Consistency of Large Language Models under Ambiguity. The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP). Miami, Florida, USA, 12. Nov. 2024 - 16. Nov. 2024. In: AL-ONAIZAN, Yaser, Hrsg., Mohit BANSAL, Hrsg., Yun-Nung CHEN, Hrsg.. Findings of the Association for Computational Linguistics : EMNLP 2024. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024, S. 17203-17217. ISBN 979-8-89176-168-1. Verfügbar unter: doi: 10.18653/v1/2024.findings-emnlp.1003BibTex
@inproceedings{Sedova2024Analy-72422, title={To Know or Not To Know? : Analyzing Self-Consistency of Large Language Models under Ambiguity}, year={2024}, doi={10.18653/v1/2024.findings-emnlp.1003}, isbn={979-8-89176-168-1}, address={Stroudsburg, PA, USA}, publisher={Association for Computational Linguistics}, booktitle={Findings of the Association for Computational Linguistics : EMNLP 2024}, pages={17203--17217}, editor={Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung}, author={Sedova, Anastasiia and Litschko, Robert and Frassinelli, Diego and Roth, Benjamin and Plank, Barbara} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72422"> <dcterms:abstract>One of the major aspects contributing to the striking performance of large language models (LLMs) is the vast amount of factual knowledge accumulated during pre-training. Yet, many LLMs suffer from self-inconsistency, which raises doubts about their trustworthiness and reliability. This paper focuses on entity type ambiguity, analyzing the proficiency and consistency of state-of-the-art LLMs in applying factual knowledge when prompted with ambiguous entities. To do so, we propose an evaluation protocol that disentangles knowing from applying knowledge, and test state-of-the-art LLMs on 49 ambiguous entities. Our experiments reveal that LLMs struggle with choosing the correct entity reading, achieving an average accuracy of only 85%, and as low as 75% with underspecified prompts. The results also reveal systematic discrepancies in LLM behavior, showing that while the models may possess knowledge, they struggle to apply it consistently, exhibit biases toward preferred readings, and display self-inconsistencies. This highlights the need to address entity ambiguity in the future for more trustworthy LLMs.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-21T11:01:59Z</dc:date> <dc:creator>Roth, Benjamin</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Plank, Barbara</dc:creator> <dc:creator>Sedova, Anastasiia</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sedova, Anastasiia</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72422/4/Sedova_2-1psffk7q1e0es9.pdf"/> <dc:contributor>Roth, Benjamin</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72422"/> <dc:contributor>Frassinelli, Diego</dc:contributor> <dc:creator>Frassinelli, Diego</dc:creator> <dcterms:title>To Know or Not To Know? : Analyzing Self-Consistency of Large Language Models under Ambiguity</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:contributor>Litschko, Robert</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-21T11:01:59Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72422/4/Sedova_2-1psffk7q1e0es9.pdf"/> <dc:creator>Litschko, Robert</dc:creator> <dc:contributor>Plank, Barbara</dc:contributor> </rdf:Description> </rdf:RDF>