Publikation: B4M : Breaking Low-Rank Adapter for Making Content-Style Customization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by adapting pre-trained text-to-image models on a few images. Recent studies focus on simultaneously customizing content and detailed visual style in images but often struggle with entangling the two. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style learning, we propose a novel framework that separates the parameter space to facilitate individual learning of content and style by introducing “partly learnable projection” (PLP) matrices to separate the original adapters into divided sub-parameter spaces. A “break-for-make” customization learning pipeline based on PLP is proposed: we first break the original adapters into “up projection” and “down projection” for content and style concept under orthogonal prior and then make the entity parameter space by reconstructing the content and style PLPs matrices by using Riemannian precondition to adaptively balance content and style learning. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines regarding content-style-prompt alignment. Code is available at: https://github.com/ICTMCG/Break-for-make.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XU, Yu, Fan TANG, Juan CAO, Yuxin ZHANG, Oliver DEUSSEN, Weiming DONG, Jintao LI, Tong-Yee LEE, 2025. B4M : Breaking Low-Rank Adapter for Making Content-Style Customization. In: ACM Transactions on Graphics. ACM. ISSN 0730-0301. eISSN 1557-7368. Verfügbar unter: doi: 10.1145/3728461BibTex
@article{Xu2025-04-05Break-72996, title={B4M : Breaking Low-Rank Adapter for Making Content-Style Customization}, year={2025}, doi={10.1145/3728461}, issn={0730-0301}, journal={ACM Transactions on Graphics}, author={Xu, Yu and Tang, Fan and Cao, Juan and Zhang, Yuxin and Deussen, Oliver and Dong, Weiming and Li, Jintao and Lee, Tong-Yee} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72996"> <dc:contributor>Dong, Weiming</dc:contributor> <dc:creator>Xu, Yu</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Li, Jintao</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72996"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-10T09:14:54Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Tang, Fan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Cao, Juan</dc:contributor> <dc:creator>Zhang, Yuxin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-10T09:14:54Z</dcterms:available> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Dong, Weiming</dc:creator> <dc:creator>Cao, Juan</dc:creator> <dc:contributor>Lee, Tong-Yee</dc:contributor> <dcterms:abstract>Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by adapting pre-trained text-to-image models on a few images. Recent studies focus on simultaneously customizing content and detailed visual style in images but often struggle with entangling the two. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style learning, we propose a novel framework that separates the parameter space to facilitate individual learning of content and style by introducing “partly learnable projection” (PLP) matrices to separate the original adapters into divided sub-parameter spaces. A “break-for-make” customization learning pipeline based on PLP is proposed: we first break the original adapters into “up projection” and “down projection” for content and style concept under orthogonal prior and then make the entity parameter space by reconstructing the content and style PLPs matrices by using Riemannian precondition to adaptively balance content and style learning. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines regarding content-style-prompt alignment. Code is available at: https://github.com/ICTMCG/Break-for-make.</dcterms:abstract> <dc:contributor>Zhang, Yuxin</dc:contributor> <dc:contributor>Tang, Fan</dc:contributor> <dc:creator>Lee, Tong-Yee</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Li, Jintao</dc:contributor> <dcterms:title>B4M : Breaking Low-Rank Adapter for Making Content-Style Customization</dcterms:title> <dcterms:issued>2025-04-05</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Xu, Yu</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> </rdf:Description> </rdf:RDF>