Publikation:

B4M : Breaking Low-Rank Adapter for Making Content-Style Customization

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Xu, Yu
Cao, Juan
Zhang, Yuxin
Dong, Weiming
Li, Jintao
Lee, Tong-Yee

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Graphics. ACM. ISSN 0730-0301. eISSN 1557-7368. Verfügbar unter: doi: 10.1145/3728461

Zusammenfassung

Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by adapting pre-trained text-to-image models on a few images. Recent studies focus on simultaneously customizing content and detailed visual style in images but often struggle with entangling the two. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style learning, we propose a novel framework that separates the parameter space to facilitate individual learning of content and style by introducing “partly learnable projection” (PLP) matrices to separate the original adapters into divided sub-parameter spaces. A “break-for-make” customization learning pipeline based on PLP is proposed: we first break the original adapters into “up projection” and “down projection” for content and style concept under orthogonal prior and then make the entity parameter space by reconstructing the content and style PLPs matrices by using Riemannian precondition to adaptively balance content and style learning. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines regarding content-style-prompt alignment. Code is available at: https://github.com/ICTMCG/Break-for-make.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Customize generation, content-style fusion, text-to-image generation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XU, Yu, Fan TANG, Juan CAO, Yuxin ZHANG, Oliver DEUSSEN, Weiming DONG, Jintao LI, Tong-Yee LEE, 2025. B4M : Breaking Low-Rank Adapter for Making Content-Style Customization. In: ACM Transactions on Graphics. ACM. ISSN 0730-0301. eISSN 1557-7368. Verfügbar unter: doi: 10.1145/3728461
BibTex
@article{Xu2025-04-05Break-72996,
  title={B4M : Breaking Low-Rank Adapter for Making Content-Style Customization},
  year={2025},
  doi={10.1145/3728461},
  issn={0730-0301},
  journal={ACM Transactions on Graphics},
  author={Xu, Yu and Tang, Fan and Cao, Juan and Zhang, Yuxin and Deussen, Oliver and Dong, Weiming and Li, Jintao and Lee, Tong-Yee}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72996">
    <dc:contributor>Dong, Weiming</dc:contributor>
    <dc:creator>Xu, Yu</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Li, Jintao</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72996"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-10T09:14:54Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Tang, Fan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Cao, Juan</dc:contributor>
    <dc:creator>Zhang, Yuxin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-10T09:14:54Z</dcterms:available>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Dong, Weiming</dc:creator>
    <dc:creator>Cao, Juan</dc:creator>
    <dc:contributor>Lee, Tong-Yee</dc:contributor>
    <dcterms:abstract>Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by adapting pre-trained text-to-image models on a few images. Recent studies focus on simultaneously customizing content and detailed visual style in images but often struggle with entangling the two. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style learning, we propose a novel framework that separates the parameter space to facilitate individual learning of content and style by introducing “partly learnable projection” (PLP) matrices to separate the original adapters into divided sub-parameter spaces. A “break-for-make” customization learning pipeline based on PLP is proposed: we first break the original adapters into “up projection” and “down projection” for content and style concept under orthogonal prior and then make the entity parameter space by reconstructing the content and style PLPs matrices by using Riemannian precondition to adaptively balance content and style learning. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines regarding content-style-prompt alignment. Code is available at: https://github.com/ICTMCG/Break-for-make.</dcterms:abstract>
    <dc:contributor>Zhang, Yuxin</dc:contributor>
    <dc:contributor>Tang, Fan</dc:contributor>
    <dc:creator>Lee, Tong-Yee</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Li, Jintao</dc:contributor>
    <dcterms:title>B4M : Breaking Low-Rank Adapter for Making Content-Style Customization</dcterms:title>
    <dcterms:issued>2025-04-05</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Xu, Yu</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen