Publikation: A joint quantile and expected shortfall regression framework
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIMITRIADIS, Timo, Sebastian BAYER, 2019. A joint quantile and expected shortfall regression framework. In: Electronic Journal of Statistics. 2019, 13(1), pp. 1823-1871. eISSN 1935-7524. Available under: doi: 10.1214/19-EJS1560BibTex
@article{Dimitriadis2019joint-47521, year={2019}, doi={10.1214/19-EJS1560}, title={A joint quantile and expected shortfall regression framework}, number={1}, volume={13}, journal={Electronic Journal of Statistics}, pages={1823--1871}, author={Dimitriadis, Timo and Bayer, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47521"> <dcterms:issued>2019</dcterms:issued> <dc:creator>Bayer, Sebastian</dc:creator> <dcterms:title>A joint quantile and expected shortfall regression framework</dcterms:title> <dcterms:abstract xml:lang="eng">We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES.</dcterms:abstract> <dc:creator>Dimitriadis, Timo</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Bayer, Sebastian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47521"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Dimitriadis, Timo</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T09:35:36Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T09:35:36Z</dcterms:available> </rdf:Description> </rdf:RDF>