Publikation:

A joint quantile and expected shortfall regression framework

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Electronic Journal of Statistics. 2019, 13(1), pp. 1823-1871. eISSN 1935-7524. Available under: doi: 10.1214/19-EJS1560

Zusammenfassung

We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DIMITRIADIS, Timo, Sebastian BAYER, 2019. A joint quantile and expected shortfall regression framework. In: Electronic Journal of Statistics. 2019, 13(1), pp. 1823-1871. eISSN 1935-7524. Available under: doi: 10.1214/19-EJS1560
BibTex
@article{Dimitriadis2019joint-47521,
  year={2019},
  doi={10.1214/19-EJS1560},
  title={A joint quantile and expected shortfall regression framework},
  number={1},
  volume={13},
  journal={Electronic Journal of Statistics},
  pages={1823--1871},
  author={Dimitriadis, Timo and Bayer, Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47521">
    <dcterms:issued>2019</dcterms:issued>
    <dc:creator>Bayer, Sebastian</dc:creator>
    <dcterms:title>A joint quantile and expected shortfall regression framework</dcterms:title>
    <dcterms:abstract xml:lang="eng">We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on strictly consistent loss functions for the pair consisting of the quantile and the ES, which allow for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss functions depend on two specification functions, whose choices affect the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting and backtesting ES, which is particularly relevant in light of the recent introduction of the ES into the Basel Accords. We illustrate this through two exemplary empirical applications in forecasting and forecast combination of the ES.</dcterms:abstract>
    <dc:creator>Dimitriadis, Timo</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Bayer, Sebastian</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47521"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Dimitriadis, Timo</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T09:35:36Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T09:35:36Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen