Publikation:

Critical force in active microrheology

Lade...
Vorschaubild

Dateien

Gruber_2-1s5vb8kfbtf5m7.pdf
Gruber_2-1s5vb8kfbtf5m7.pdfGröße: 1.07 MBDownloads: 364

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review E. American Physical Society (APS). 2020, 101(1), 012612. ISSN 2470-0045. eISSN 2470-0053. Available under: doi: 10.1103/PhysRevE.101.012612

Zusammenfassung

Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent −1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Statistical physics, microrheology, colloids

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRUBER, Markus, Antonio M. PUERTAS, Matthias FUCHS, 2020. Critical force in active microrheology. In: Physical Review E. American Physical Society (APS). 2020, 101(1), 012612. ISSN 2470-0045. eISSN 2470-0053. Available under: doi: 10.1103/PhysRevE.101.012612
BibTex
@article{Gruber2020-01-30Criti-48453,
  year={2020},
  doi={10.1103/PhysRevE.101.012612},
  title={Critical force in active microrheology},
  number={1},
  volume={101},
  issn={2470-0045},
  journal={Physical Review E},
  author={Gruber, Markus and Puertas, Antonio M. and Fuchs, Matthias},
  note={Article Number: 012612}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48453">
    <dc:creator>Gruber, Markus</dc:creator>
    <dc:creator>Puertas, Antonio M.</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-01-30</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48453/3/Gruber_2-1s5vb8kfbtf5m7.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48453/3/Gruber_2-1s5vb8kfbtf5m7.pdf"/>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dc:contributor>Puertas, Antonio M.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T10:29:34Z</dc:date>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48453"/>
    <dc:contributor>Gruber, Markus</dc:contributor>
    <dcterms:title>Critical force in active microrheology</dcterms:title>
    <dcterms:abstract xml:lang="eng">Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent −1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T10:29:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen