Publikation:

Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Ziad, Youssef
ElSheikh, Mostafa
Dawood, Ahmed
Berekovic, Mladen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2023 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2023, pp. 463-469. ISBN 978-1-6654-3065-4. Available under: doi: 10.1109/ssci52147.2023.10371809

Zusammenfassung

Pedestrians and cyclists are some of the most vulnerable, but also least predictable traffic participants. Due to their ability to move in urban environments with high degrees of freedom and sudden changes of direction, their movement is still challenging to predict. We present a driver assistance system that tackles some of these challenges. Our system consists of a world model made of a variational autoencoder and a long short-term memory network. The world model takes vision and action data from the perspective of the vulnerable traffic participant and generates a visual prediction (image) of their environment up to one second in advance. The second part of our system is a transformer-based description system that takes the predicted perceptions and here, as a showcase, abstracts them down to a textual warning if a collision between car and vulnerable traffic participant seems imminent. Our description system helps contextualize the dangerous situation for the driver and could be extended to other driver assistance systems, such as blind spot detection. We evaluate our system on a dataset generated in simulations using CARLA.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

autonomous driving, machine learning, video description, world models

Konferenz

2023 IEEE Symposium Series on Computational Intelligence (SSCI), 5. Dez. 2023 - 8. Dez. 2023, Mexico City, Mexico
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PETZOLD, Julian, Mostafa WAHBY, Youssef ZIAD, Mostafa ELSHEIKH, Ahmed DAWOOD, Mladen BEREKOVIC, Heiko HAMANN, 2023. Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction. 2023 IEEE Symposium Series on Computational Intelligence (SSCI). Mexico City, Mexico, 5. Dez. 2023 - 8. Dez. 2023. In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2023, pp. 463-469. ISBN 978-1-6654-3065-4. Available under: doi: 10.1109/ssci52147.2023.10371809
BibTex
@inproceedings{Petzold2023-12-05Prote-69469,
  year={2023},
  doi={10.1109/ssci52147.2023.10371809},
  title={Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction},
  isbn={978-1-6654-3065-4},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2023 IEEE Symposium Series on Computational Intelligence (SSCI)},
  pages={463--469},
  author={Petzold, Julian and Wahby, Mostafa and Ziad, Youssef and ElSheikh, Mostafa and Dawood, Ahmed and Berekovic, Mladen and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69469">
    <dc:creator>Berekovic, Mladen</dc:creator>
    <dc:creator>Dawood, Ahmed</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:contributor>ElSheikh, Mostafa</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ziad, Youssef</dc:contributor>
    <dc:contributor>Berekovic, Mladen</dc:contributor>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-05T09:06:23Z</dc:date>
    <dcterms:title>Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Dawood, Ahmed</dc:contributor>
    <dcterms:issued>2023-12-05</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Petzold, Julian</dc:creator>
    <dc:contributor>Petzold, Julian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-05T09:06:23Z</dcterms:available>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69469"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>Pedestrians and cyclists are some of the most vulnerable, but also least predictable traffic participants. Due to their ability to move in urban environments with high degrees of freedom and sudden changes of direction, their movement is still challenging to predict. We present a driver assistance system that tackles some of these challenges. Our system consists of a world model made of a variational autoencoder and a long short-term memory network. The world model takes vision and action data from the perspective of the vulnerable traffic participant and generates a visual prediction (image) of their environment up to one second in advance. The second part of our system is a transformer-based description system that takes the predicted perceptions and here, as a showcase, abstracts them down to a textual warning if a collision between car and vulnerable traffic participant seems imminent. Our description system helps contextualize the dangerous situation for the driver and could be extended to other driver assistance systems, such as blind spot detection. We evaluate our system on a dataset generated in simulations using CARLA.</dcterms:abstract>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:creator>ElSheikh, Mostafa</dc:creator>
    <dc:creator>Ziad, Youssef</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen