Publikation: Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Pedestrians and cyclists are some of the most vulnerable, but also least predictable traffic participants. Due to their ability to move in urban environments with high degrees of freedom and sudden changes of direction, their movement is still challenging to predict. We present a driver assistance system that tackles some of these challenges. Our system consists of a world model made of a variational autoencoder and a long short-term memory network. The world model takes vision and action data from the perspective of the vulnerable traffic participant and generates a visual prediction (image) of their environment up to one second in advance. The second part of our system is a transformer-based description system that takes the predicted perceptions and here, as a showcase, abstracts them down to a textual warning if a collision between car and vulnerable traffic participant seems imminent. Our description system helps contextualize the dangerous situation for the driver and could be extended to other driver assistance systems, such as blind spot detection. We evaluate our system on a dataset generated in simulations using CARLA.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PETZOLD, Julian, Mostafa WAHBY, Youssef ZIAD, Mostafa ELSHEIKH, Ahmed DAWOOD, Mladen BEREKOVIC, Heiko HAMANN, 2023. Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction. 2023 IEEE Symposium Series on Computational Intelligence (SSCI). Mexico City, Mexico, 5. Dez. 2023 - 8. Dez. 2023. In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2023, pp. 463-469. ISBN 978-1-6654-3065-4. Available under: doi: 10.1109/ssci52147.2023.10371809BibTex
@inproceedings{Petzold2023-12-05Prote-69469, year={2023}, doi={10.1109/ssci52147.2023.10371809}, title={Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction}, isbn={978-1-6654-3065-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2023 IEEE Symposium Series on Computational Intelligence (SSCI)}, pages={463--469}, author={Petzold, Julian and Wahby, Mostafa and Ziad, Youssef and ElSheikh, Mostafa and Dawood, Ahmed and Berekovic, Mladen and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69469"> <dc:creator>Berekovic, Mladen</dc:creator> <dc:creator>Dawood, Ahmed</dc:creator> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>ElSheikh, Mostafa</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Ziad, Youssef</dc:contributor> <dc:contributor>Berekovic, Mladen</dc:contributor> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-05T09:06:23Z</dc:date> <dcterms:title>Protecting Vulnerable Road Users : Semantic Video Analysis for Accident Prediction</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Dawood, Ahmed</dc:contributor> <dcterms:issued>2023-12-05</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Petzold, Julian</dc:creator> <dc:contributor>Petzold, Julian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-05T09:06:23Z</dcterms:available> <dc:contributor>Wahby, Mostafa</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69469"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>Pedestrians and cyclists are some of the most vulnerable, but also least predictable traffic participants. Due to their ability to move in urban environments with high degrees of freedom and sudden changes of direction, their movement is still challenging to predict. We present a driver assistance system that tackles some of these challenges. Our system consists of a world model made of a variational autoencoder and a long short-term memory network. The world model takes vision and action data from the perspective of the vulnerable traffic participant and generates a visual prediction (image) of their environment up to one second in advance. The second part of our system is a transformer-based description system that takes the predicted perceptions and here, as a showcase, abstracts them down to a textual warning if a collision between car and vulnerable traffic participant seems imminent. Our description system helps contextualize the dangerous situation for the driver and could be extended to other driver assistance systems, such as blind spot detection. We evaluate our system on a dataset generated in simulations using CARLA.</dcterms:abstract> <dc:creator>Wahby, Mostafa</dc:creator> <dc:creator>ElSheikh, Mostafa</dc:creator> <dc:creator>Ziad, Youssef</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>