Publikation: Modelling financial transaction price movements : A dynamic integer count data model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we develop a dynamic model for integer counts to capture fundamental properties of financial prices at the transaction level. Our model relies on an autoregressive multinomial component for the direction of the price change and a dynamic count data component for the size of the price changes. Since the model is capable of capturing a wide range of discrete price movements it is particularly suited for financial markets where the trading intensity is moderate or low. We present the model at work by applying it to transaction data of two shares traded at the NYSE traded over a period of one trading month. We show that the model is well suited to test some theoretical implications of the market microstructure theory on the relationship between price movements and other marks of the trading process. Based on density forecast methods modified for the case of discrete random variables we show that our model is capable to explain large parts of the observed distribution of price changes at the transaction level.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIESENFELD, Roman, Ingmar NOLTE, Winfried POHLMEIER, 2005. Modelling financial transaction price movements : A dynamic integer count data model. In: Empirical economics. 2005, 30(4), pp. 795-825. ISSN 0377-7332. Available under: doi: 10.1007/s00181-005-0001-1BibTex
@article{Liesenfeld2005Model-19848, year={2005}, doi={10.1007/s00181-005-0001-1}, title={Modelling financial transaction price movements : A dynamic integer count data model}, number={4}, volume={30}, issn={0377-7332}, journal={Empirical economics}, pages={795--825}, author={Liesenfeld, Roman and Nolte, Ingmar and Pohlmeier, Winfried} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19848"> <dc:creator>Pohlmeier, Winfried</dc:creator> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Modelling financial transaction price movements : A dynamic integer count data model</dcterms:title> <dc:contributor>Liesenfeld, Roman</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19848"/> <dcterms:abstract xml:lang="eng">In this paper we develop a dynamic model for integer counts to capture fundamental properties of financial prices at the transaction level. Our model relies on an autoregressive multinomial component for the direction of the price change and a dynamic count data component for the size of the price changes. Since the model is capable of capturing a wide range of discrete price movements it is particularly suited for financial markets where the trading intensity is moderate or low. We present the model at work by applying it to transaction data of two shares traded at the NYSE traded over a period of one trading month. We show that the model is well suited to test some theoretical implications of the market microstructure theory on the relationship between price movements and other marks of the trading process. Based on density forecast methods modified for the case of discrete random variables we show that our model is capable to explain large parts of the observed distribution of price changes at the transaction level.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <dc:contributor>Nolte, Ingmar</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-25T07:21:55Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-25T07:21:55Z</dc:date> <dc:creator>Liesenfeld, Roman</dc:creator> <dc:creator>Nolte, Ingmar</dc:creator> <dcterms:issued>2005</dcterms:issued> <dcterms:bibliographicCitation>Publ. in: Empirical economics ; 30 (2006), 4. - S. 795-825</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>