Publikation: Generalized Maximum Entropy Estimation
Lade...
Dateien
Datum
2019
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Machine Learning Research. Microtome Publishing. 2019, 20, 138. ISSN 1532-4435. eISSN 1533-7928
Zusammenfassung
We consider the problem of estimating a probability distribution that maximizes the entropy while satisfying a finite number of moment constraints, possibly corrupted by noise. Based on duality of convex programming, we present a novel approximation scheme using a smoothed fast gradient method that is equipped with explicit bounds on the approximation error. We further demonstrate how the presented scheme can be used for approximating the chemical master equation through the zero-information moment closure method, and for an approximate dynamic programming approach in the context of constrained Markov decision processes with uncountable state and action spaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Entropy maximization, convex optimization, relative entropy minimization, fast gradient method, approximate dynamic programming
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SUTTER, Tobias, David SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2019. Generalized Maximum Entropy Estimation. In: Journal of Machine Learning Research. Microtome Publishing. 2019, 20, 138. ISSN 1532-4435. eISSN 1533-7928BibTex
@article{Sutter2019Gener-55731, year={2019}, title={Generalized Maximum Entropy Estimation}, url={https://jmlr.org/papers/v20/17-486.html}, volume={20}, issn={1532-4435}, journal={Journal of Machine Learning Research}, author={Sutter, Tobias and Sutter, David and Esfahani, Peyman Mohajerin and Lygeros, John}, note={Article Number: 138} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55731"> <dc:creator>Sutter, David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T11:58:34Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55731/1/Sutter_2-1svqydo8rxhan3.pdf"/> <dc:contributor>Sutter, David</dc:contributor> <dc:creator>Lygeros, John</dc:creator> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55731"/> <dcterms:issued>2019</dcterms:issued> <dcterms:abstract xml:lang="eng">We consider the problem of estimating a probability distribution that maximizes the entropy while satisfying a finite number of moment constraints, possibly corrupted by noise. Based on duality of convex programming, we present a novel approximation scheme using a smoothed fast gradient method that is equipped with explicit bounds on the approximation error. We further demonstrate how the presented scheme can be used for approximating the chemical master equation through the zero-information moment closure method, and for an approximate dynamic programming approach in the context of constrained Markov decision processes with uncountable state and action spaces.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T11:58:34Z</dcterms:available> <dc:creator>Sutter, Tobias</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55731/1/Sutter_2-1svqydo8rxhan3.pdf"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dcterms:title>Generalized Maximum Entropy Estimation</dcterms:title> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dc:contributor>Lygeros, John</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2021-12-02
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja