Publikation: A privacy-aware model to process data from location-based social media
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many social media services offer their users to add location data to their posts. Since this data is usually publicly available, it can be used to create thematic maps based on the topical information, e.g. derived from hashtags attached to posts. However, users might not be aware, that their publications can be used for other purposes by third parties. In certain situations it can be compromising the user’s privacy. We introduce a conceptual model to help people who create those maps to preserve privacy of social media users. Therefore we analyze the data in a set of four facets. For each facet, we eliminate precise data by deriving multiple abstraction layers from it. Using these layers, we are able to quantitatively describe different levels of privacy. We further describe an example application to show use cases for the abstraction model on the same data in two contrary scenarios.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LÖCHNER, Marc, Alexander DUNKEL, Dirk BURGHARDT, 2018. A privacy-aware model to process data from location-based social media. VGI Geovisual Analytics Workshop, colocated with BDVA 2018. Konstanz, Germany, 19. Okt. 2018. In: BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop. 2018BibTex
@inproceedings{Lochner2018priva-43921, year={2018}, title={A privacy-aware model to process data from location-based social media}, booktitle={VGI Geovisual Analytics Workshop}, editor={Burghardt, Dirk and Chen, Siming and Andrienko, Gennady and Andrienko, Natalia and Purves, Ross and Diehl, Alexandra}, author={Löchner, Marc and Dunkel, Alexander and Burghardt, Dirk} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43921"> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Dunkel, Alexander</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43921/3/Loechner_2-1tc0wl382uqkr0.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43921"/> <dc:creator>Burghardt, Dirk</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:45:13Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Many social media services offer their users to add location data to their posts. Since this data is usually publicly available, it can be used to create thematic maps based on the topical information, e.g. derived from hashtags attached to posts. However, users might not be aware, that their publications can be used for other purposes by third parties. In certain situations it can be compromising the user’s privacy. We introduce a conceptual model to help people who create those maps to preserve privacy of social media users. Therefore we analyze the data in a set of four facets. For each facet, we eliminate precise data by deriving multiple abstraction layers from it. Using these layers, we are able to quantitatively describe different levels of privacy. We further describe an example application to show use cases for the abstraction model on the same data in two contrary scenarios.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Burghardt, Dirk</dc:contributor> <dcterms:title>A privacy-aware model to process data from location-based social media</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:45:13Z</dc:date> <dc:creator>Dunkel, Alexander</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43921/3/Loechner_2-1tc0wl382uqkr0.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Löchner, Marc</dc:creator> <dc:contributor>Löchner, Marc</dc:contributor> </rdf:Description> </rdf:RDF>