Publikation:

Multi-label classification and extracting predicted class hierarchies

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Pattern Recognition. 2011, 44(3), pp. 724-738. ISSN 0031-3203. Available under: doi: 10.1016/j.patcog.2010.09.010

Zusammenfassung

This paper investigates hierarchy extraction from results of multi-label classification (MC). MC deals with instances labeled by multiple classes rather than just one, and the classes are often hierarchically organized. Usually multi-label classifiers rely on a predefined class hierarchy. A much less investigated approach is to suppose that the hierarchy is unknown and to infer it automatically. In this setting, the proposed system classifies multi-label data and extracts a class hierarchy from multi-label predictions. It is based on a combination of a novel multi-label extension of the fuzzy Adaptive Resonance Associative Map (ARAM) neural network with an association rule learner.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Multi-label, Adaptive Resonance Theory, Document Classification, Hierarchy Extraction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRUCKER, Florian, Fernando BENITES, Elena SAPOZHNIKOVA, 2011. Multi-label classification and extracting predicted class hierarchies. In: Pattern Recognition. 2011, 44(3), pp. 724-738. ISSN 0031-3203. Available under: doi: 10.1016/j.patcog.2010.09.010
BibTex
@article{Brucker2011Multi-2997,
  year={2011},
  doi={10.1016/j.patcog.2010.09.010},
  title={Multi-label classification and extracting predicted class hierarchies},
  number={3},
  volume={44},
  issn={0031-3203},
  journal={Pattern Recognition},
  pages={724--738},
  author={Brucker, Florian and Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2997">
    <dc:contributor>Benites, Fernando</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:41Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper investigates hierarchy extraction from results of multi-label classification (MC). MC deals with instances labeled by multiple classes rather than just one, and the classes are often hierarchically organized. Usually multi-label classifiers rely on a predefined class hierarchy. A much less investigated approach is to suppose that the hierarchy is unknown and to infer it automatically. In this setting, the proposed system classifies multi-label data and extracts a class hierarchy from multi-label predictions. It is based on a combination of a novel multi-label extension of the fuzzy Adaptive Resonance Associative Map (ARAM) neural network with an association rule learner.</dcterms:abstract>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>Publ. in: Pattern Recognition 44 (2011), 3, pp. 724-738</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2997"/>
    <dcterms:title>Multi-label classification and extracting predicted class hierarchies</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:41Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dc:contributor>Brucker, Florian</dc:contributor>
    <dc:creator>Brucker, Florian</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen