Publikation: A mode coupling theory for Brownian particles in homogeneous steady shear flow
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A microscopic approach is presented for calculating general properties of interacting Brownian particles under steady shearing. We start from exact expressions for shear-dependent steady-state averages, such as correlation and structure functions, in the form of generalized Green Kubo relations. To these we apply approximations inspired by the mode coupling theory (MCT) for the quiescent system, accessing steady-state properties by integration through the transient dynamics after startup of steady shear. Exact equations of motion, with memory effects, for the required transient density correlation functions are derived next; these can also be approximated within an MCT-like approach. This results in closed equations for the nonequilibrium stationary state of sheared dense colloidal dispersions, with the equilibrium structure factor of the unsheared system as the only input. In three dimensions, these equations currently require further approximation prior to numerical solution. However, some universal aspects can be analyzed exactly, including the discontinuous onset of a yield stress at the ideal glass transition predicted by MCT. Using these methods we additionally discuss the distorted microstructure of a sheared hard-sphere colloid near the glass transition, and consider how this relates to the shear stress. Time-dependent fluctuations around the stationary state are then approximated and compared to data from experiment and simulation; the correlators for yielding glassy states obey a time-shear-superposition principle. The work presented here fully develops an approach first outlined previously [Fuchs and Cates, Phys. Rev. Lett. 89, 248304 (2002)], while incorporating a significant technical change from that work in the choice of mode coupling approximation used, whose advantages are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FUCHS, Matthias, Michael E. CATES, 2009. A mode coupling theory for Brownian particles in homogeneous steady shear flow. In: Journal of Rheology. 2009, 53(4), pp. 957-1000. Available under: doi: 10.1122/1.3119084BibTex
@article{Fuchs2009coupl-4962, year={2009}, doi={10.1122/1.3119084}, title={A mode coupling theory for Brownian particles in homogeneous steady shear flow}, number={4}, volume={53}, journal={Journal of Rheology}, pages={957--1000}, author={Fuchs, Matthias and Cates, Michael E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/4962"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:51:42Z</dc:date> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Cates, Michael E.</dc:creator> <dc:contributor>Fuchs, Matthias</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>A mode coupling theory for Brownian particles in homogeneous steady shear flow</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4962/1/Fuchs_Matthias_jr2009.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4962"/> <dcterms:abstract xml:lang="eng">A microscopic approach is presented for calculating general properties of interacting Brownian particles under steady shearing. We start from exact expressions for shear-dependent steady-state averages, such as correlation and structure functions, in the form of generalized Green Kubo relations. To these we apply approximations inspired by the mode coupling theory (MCT) for the quiescent system, accessing steady-state properties by integration through the transient dynamics after startup of steady shear. Exact equations of motion, with memory effects, for the required transient density correlation functions are derived next; these can also be approximated within an MCT-like approach. This results in closed equations for the nonequilibrium stationary state of sheared dense colloidal dispersions, with the equilibrium structure factor of the unsheared system as the only input. In three dimensions, these equations currently require further approximation prior to numerical solution. However, some universal aspects can be analyzed exactly, including the discontinuous onset of a yield stress at the ideal glass transition predicted by MCT. Using these methods we additionally discuss the distorted microstructure of a sheared hard-sphere colloid near the glass transition, and consider how this relates to the shear stress. Time-dependent fluctuations around the stationary state are then approximated and compared to data from experiment and simulation; the correlators for yielding glassy states obey a time-shear-superposition principle. The work presented here fully develops an approach first outlined previously [Fuchs and Cates, Phys. Rev. Lett. 89, 248304 (2002)], while incorporating a significant technical change from that work in the choice of mode coupling approximation used, whose advantages are discussed.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Cates, Michael E.</dc:contributor> <dc:creator>Fuchs, Matthias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:bibliographicCitation>First publ. in: Journal of Rheology 53 (2009), 4, pp. 957-1000</dcterms:bibliographicCitation> <dcterms:issued>2009</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:51:42Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4962/1/Fuchs_Matthias_jr2009.pdf"/> </rdf:Description> </rdf:RDF>