Publikation: Stability of mean convex cones under mean curvature flow
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Clutterbuck, Julie
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. 2010, 267(3-4), pp. 535-547. ISSN 0025-5874. Available under: doi: 10.1007/s00209-009-0634-4
Zusammenfassung
We consider graphical solutions to mean curvature flow and obtain a stability result for homothetically expanding solutions coming out of cones of positive mean curvature. If another solution is initially close to the cone at infinity, then the difference to the homothetically expanding solution becomes small for large times. The proof involves the construction of appropriate barriers.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
mean curvature flow, cone, stability
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CLUTTERBUCK, Julie, Oliver C. SCHNÜRER, 2010. Stability of mean convex cones under mean curvature flow. In: Mathematische Zeitschrift. 2010, 267(3-4), pp. 535-547. ISSN 0025-5874. Available under: doi: 10.1007/s00209-009-0634-4BibTex
@article{Clutterbuck2010Stabi-19311, year={2010}, doi={10.1007/s00209-009-0634-4}, title={Stability of mean convex cones under mean curvature flow}, number={3-4}, volume={267}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={535--547}, author={Clutterbuck, Julie and Schnürer, Oliver C.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19311"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-16T07:16:59Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Clutterbuck, Julie</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19311"/> <dc:language>eng</dc:language> <dc:contributor>Clutterbuck, Julie</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Publ. in: Mathematische Zeitschrift ; 267 (2011), 3-4. - S. 535-547</dcterms:bibliographicCitation> <dcterms:title>Stability of mean convex cones under mean curvature flow</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-16T07:16:59Z</dc:date> <dc:creator>Schnürer, Oliver C.</dc:creator> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <dcterms:abstract xml:lang="eng">We consider graphical solutions to mean curvature flow and obtain a stability result for homothetically expanding solutions coming out of cones of positive mean curvature. If another solution is initially close to the cone at infinity, then the difference to the homothetically expanding solution becomes small for large times. The proof involves the construction of appropriate barriers.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2010</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja