Publikation: Coherent control of a nanomechanical two-level system
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The Bloch sphere is a generic picture describing a coupled two-level system and the coherent dynamics of its superposition states under control of electromagnetic fields. It is commonly employed to visualise a broad variety of phenomena ranging from spin ensembles and atoms to quantum dots and superconducting circuits. The underlying Bloch equations describe the state evolution of the two-level system and allow characterising both energy and phase relaxation processes in a simple yet powerful manner. Here we demonstrate the realisation of a nanomechanical two-level system which is driven by radio frequency signals. It allows to extend the above Bloch sphere formalism to nanoelectromechanical systems. Our realisation is based on the two orthogonal fundamental flexural modes of a high quality factor nanostring resonator which are strongly coupled by a dielectric gradient field. Full Bloch sphere control is demonstrated via Rabi, Ramsey and Hahn echo experiments. This allows manipulating the classical superposition state of the coupled modes in amplitude and phase and enables deep insight into the decoherence mechanisms of nanomechanical systems. We have determined the energy relaxation time T1 and phase relaxation times T2 and T2*, and find them all to be equal. This not only indicates that energy relaxation is the dominating source of decoherence, but also demonstrates that reversible dephasing processes are negligible in such collective mechanical modes. We thus conclude that not only T1 but also T2 can be increased by engineering larger mechanical quality factors. After a series of ground-breaking experiments on ground state cooling and non-classical signatures of nanomechanical resonators in recent years, this is of particular interest in the context of quantum information processing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FAUST, Thomas, Johannes RIEGER, Maximilian SEITNER, Jörg P. KOTTHAUS, Eva M. WEIG, 2012. Coherent control of a nanomechanical two-level systemBibTex
@unpublished{Faust2012Coher-22767, year={2012}, title={Coherent control of a nanomechanical two-level system}, author={Faust, Thomas and Rieger, Johannes and Seitner, Maximilian and Kotthaus, Jörg P. and Weig, Eva M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22767"> <dc:creator>Seitner, Maximilian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Seitner, Maximilian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T10:10:33Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rieger, Johannes</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kotthaus, Jörg P.</dc:creator> <dc:contributor>Kotthaus, Jörg P.</dc:contributor> <dc:creator>Faust, Thomas</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22767/2/faust_227672.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T10:10:33Z</dc:date> <dc:creator>Weig, Eva M.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22767/2/faust_227672.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Faust, Thomas</dc:contributor> <dc:contributor>Rieger, Johannes</dc:contributor> <dc:contributor>Weig, Eva M.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012</dcterms:issued> <dcterms:title>Coherent control of a nanomechanical two-level system</dcterms:title> <dcterms:abstract xml:lang="eng">The Bloch sphere is a generic picture describing a coupled two-level system and the coherent dynamics of its superposition states under control of electromagnetic fields. It is commonly employed to visualise a broad variety of phenomena ranging from spin ensembles and atoms to quantum dots and superconducting circuits. The underlying Bloch equations describe the state evolution of the two-level system and allow characterising both energy and phase relaxation processes in a simple yet powerful manner. Here we demonstrate the realisation of a nanomechanical two-level system which is driven by radio frequency signals. It allows to extend the above Bloch sphere formalism to nanoelectromechanical systems. Our realisation is based on the two orthogonal fundamental flexural modes of a high quality factor nanostring resonator which are strongly coupled by a dielectric gradient field. Full Bloch sphere control is demonstrated via Rabi, Ramsey and Hahn echo experiments. This allows manipulating the classical superposition state of the coupled modes in amplitude and phase and enables deep insight into the decoherence mechanisms of nanomechanical systems. We have determined the energy relaxation time T1 and phase relaxation times T2 and T2*, and find them all to be equal. This not only indicates that energy relaxation is the dominating source of decoherence, but also demonstrates that reversible dephasing processes are negligible in such collective mechanical modes. We thus conclude that not only T1 but also T2 can be increased by engineering larger mechanical quality factors. After a series of ground-breaking experiments on ground state cooling and non-classical signatures of nanomechanical resonators in recent years, this is of particular interest in the context of quantum information processing.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22767"/> </rdf:Description> </rdf:RDF>