Publikation: A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, in which the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed and different techniques to prevent the excessive growth of the number of basis functions are explored. Numerical examples illustrate the efficiency of the proposed solution technique.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BANHOLZER, Stefan, Luca MECHELLI, Stefan VOLKWEIN, 2022. A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization. In: Mathematical and Computational Applications. MDPI AG. 2022, 27(3), 39. ISSN 1300-686X. eISSN 2297-8747. Available under: doi: 10.3390/mca27030039BibTex
@article{Banholzer2022-06Trust-57762, year={2022}, doi={10.3390/mca27030039}, title={A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization}, number={3}, volume={27}, issn={1300-686X}, journal={Mathematical and Computational Applications}, author={Banholzer, Stefan and Mechelli, Luca and Volkwein, Stefan}, note={Article Number: 39} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57762"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57762"/> <dc:language>eng</dc:language> <dc:contributor>Banholzer, Stefan</dc:contributor> <dc:creator>Banholzer, Stefan</dc:creator> <dc:contributor>Mechelli, Luca</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:44:35Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57762/1/Banholzer_2-1w3mmn3yksnmh0.pdf"/> <dcterms:abstract xml:lang="eng">In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, in which the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed and different techniques to prevent the excessive growth of the number of basis functions are explored. Numerical examples illustrate the efficiency of the proposed solution technique.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2022-06</dcterms:issued> <dcterms:title>A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization</dcterms:title> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Mechelli, Luca</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57762/1/Banholzer_2-1w3mmn3yksnmh0.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:44:35Z</dc:date> </rdf:Description> </rdf:RDF>