Publikation: Clustering on the net : applying autoassociative neural network to computer mediated discussions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
ProjectH, a research group of a hundred researchers, produced a huge amount of data from computer mediated discussions. The data classified several thousand postings from over 30 newsgroups into 46 categories. One approach to extract typical examples from this database is presented in this paper. An autoassociative neural network is trained on all 3000 coded messages and then used to construct typical messages under certain specified conditions. With this method the neural network can be used to create “typical” messages for several scenarios. This paper illustrates the architecture of the neural network that was used and explains the necessary modifications to the coding scheme. In addition several “typicality sets” produced by the neural net are shown and their generation is explained. In conclusion, the autoassociative neural network is used to explore threads and the types of messages that typically initiate or contribute longer lasting threads.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Fay SUDWEEKS, Sid NEWTON, Richard COYNE, 2006. Clustering on the net : applying autoassociative neural network to computer mediated discussions. In: Journal of Computer-Mediated Communication. 2006, 2(4). ISSN 1083-6101. Available under: doi: 10.1111/j.1083-6101.1997.tb00202.xBibTex
@article{Berthold2006Clust-24209,
year={2006},
doi={10.1111/j.1083-6101.1997.tb00202.x},
title={Clustering on the net : applying autoassociative neural network to computer mediated discussions},
number={4},
volume={2},
issn={1083-6101},
journal={Journal of Computer-Mediated Communication},
author={Berthold, Michael R. and Sudweeks, Fay and Newton, Sid and Coyne, Richard}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24209">
<dc:contributor>Newton, Sid</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24209"/>
<dcterms:abstract xml:lang="eng">ProjectH, a research group of a hundred researchers, produced a huge amount of data from computer mediated discussions. The data classified several thousand postings from over 30 newsgroups into 46 categories. One approach to extract typical examples from this database is presented in this paper. An autoassociative neural network is trained on all 3000 coded messages and then used to construct typical messages under certain specified conditions. With this method the neural network can be used to create “typical” messages for several scenarios. This paper illustrates the architecture of the neural network that was used and explains the necessary modifications to the coding scheme. In addition several “typicality sets” produced by the neural net are shown and their generation is explained. In conclusion, the autoassociative neural network is used to explore threads and the types of messages that typically initiate or contribute longer lasting threads.</dcterms:abstract>
<dc:creator>Coyne, Richard</dc:creator>
<dc:contributor>Sudweeks, Fay</dc:contributor>
<dc:contributor>Coyne, Richard</dc:contributor>
<dcterms:issued>2006</dcterms:issued>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Berthold, Michael R.</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:56:59Z</dcterms:available>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:contributor>Berthold, Michael R.</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:56:59Z</dc:date>
<dcterms:title>Clustering on the net : applying autoassociative neural network to computer mediated discussions</dcterms:title>
<dc:creator>Sudweeks, Fay</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:bibliographicCitation>Journal of Computer-Mediated Communication ; 2 (1997), 4.</dcterms:bibliographicCitation>
<dc:language>eng</dc:language>
<dc:rights>terms-of-use</dc:rights>
<dc:creator>Newton, Sid</dc:creator>
</rdf:Description>
</rdf:RDF>