Publikation: The constant angle problem for mean curvature flow inside rotational tori
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical Research Letters. 2014, 21(3), pp. 537-551. ISSN 1073-2780. eISSN 1945-001X. Available under: doi: 10.4310/MRL.2014.v21.n3.a10
Zusammenfassung
We flow a hypersurface in Euclidean space by mean curvature flow (MCF) with a Neumann boundary condition, where the boundary manifold is any torus of revolution. If we impose the conditions that the initial manifold is compatible and does not contain the rotational vector field in its tangent space, then MCF exists for all time and converges to a flat cross-section as t→∞.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
LAMBERT, Ben, 2014. The constant angle problem for mean curvature flow inside rotational tori. In: Mathematical Research Letters. 2014, 21(3), pp. 537-551. ISSN 1073-2780. eISSN 1945-001X. Available under: doi: 10.4310/MRL.2014.v21.n3.a10BibTex
@article{Lambert2014const-30404, year={2014}, doi={10.4310/MRL.2014.v21.n3.a10}, title={The constant angle problem for mean curvature flow inside rotational tori}, number={3}, volume={21}, issn={1073-2780}, journal={Mathematical Research Letters}, pages={537--551}, author={Lambert, Ben} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30404"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30404"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T14:15:22Z</dcterms:available> <dcterms:abstract xml:lang="eng">We flow a hypersurface in Euclidean space by mean curvature flow (MCF) with a Neumann boundary condition, where the boundary manifold is any torus of revolution. If we impose the conditions that the initial manifold is compatible and does not contain the rotational vector field in its tangent space, then MCF exists for all time and converges to a flat cross-section as t→∞.</dcterms:abstract> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>The constant angle problem for mean curvature flow inside rotational tori</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T14:15:22Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lambert, Ben</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Lambert, Ben</dc:contributor> <dcterms:issued>2014</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja