Publikation: Refugee or Expat, Hero or Threat : Migrant Queries in Google News Search Results
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Search engines play a gatekeeper role in current high-choice information environments. Considered a form of new media, users are still more likely to find and trust news found through search than social media sites. Indeed, search engines are one of the most utilised technologies to find political information, despite audits uncovering biases in their results, for example, towards national outlets over local ones. It is therefore important to keep in mind the potential of search results to affect public opinion. With this study, we investigate how Google search news headlines and snippets differ when varying migrant search terms (e.g., immigrant, refugee, expat). We employ computational text analysis methods as well as qualitative content analysis. Specifically, we employ an automated framework for detecting media frames, originally trained on Twitter data, and attempt to transfer it to news data; this framework allows for a categorization of data to frames of a generic-issue (economy, safety, health) and specific (hero:diversity, threat:jobs) nature. We evaluate its applicability for this novel data source and find that it performs well for frames related economy and security. Our next steps include analysing the results of other computational measures, namely, sentiment, agency and political outlet of the news item. We expect that sentiment and agency will complement the initial results we see based on media frames.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEN, Indira, Roberto ULLOA, Aleksandra URMAN, Mykola MAKHORTYKH, Celina KACPERSKI, 2023. Refugee or Expat, Hero or Threat : Migrant Queries in Google News Search Results. Decolonising the internet. Dublin, Ireland, 2. Nov. 2022 - 5. Nov. 2022. In: 2022: AoIR2022 : Selected Papers in Internet Research 2022 : Research from the Annual Conference of the Association of Internet Researchers. Illinois: University of Illinois Libraries, 2023. eISSN 2162-3317. Verfügbar unter: doi: 10.5210/spir.v2022i0.13085BibTex
@inproceedings{Sen2023-03-29Refug-67722, year={2023}, doi={10.5210/spir.v2022i0.13085}, title={Refugee or Expat, Hero or Threat : Migrant Queries in Google News Search Results}, publisher={University of Illinois Libraries}, address={Illinois}, booktitle={2022: AoIR2022 : Selected Papers in Internet Research 2022 : Research from the Annual Conference of the Association of Internet Researchers}, author={Sen, Indira and Ulloa, Roberto and Urman, Aleksandra and Makhortykh, Mykola and Kacperski, Celina} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67722"> <dcterms:title>Refugee or Expat, Hero or Threat : Migrant Queries in Google News Search Results</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Makhortykh, Mykola</dc:creator> <dc:contributor>Makhortykh, Mykola</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67722"/> <dc:language>eng</dc:language> <dcterms:issued>2023-03-29</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-01T09:58:07Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:contributor>Kacperski, Celina</dc:contributor> <dc:creator>Sen, Indira</dc:creator> <dc:contributor>Sen, Indira</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-01T09:58:07Z</dc:date> <dc:contributor>Ulloa, Roberto</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:creator>Urman, Aleksandra</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Kacperski, Celina</dc:creator> <dc:creator>Ulloa, Roberto</dc:creator> <dc:contributor>Urman, Aleksandra</dc:contributor> <dcterms:abstract>Search engines play a gatekeeper role in current high-choice information environments. Considered a form of new media, users are still more likely to find and trust news found through search than social media sites. Indeed, search engines are one of the most utilised technologies to find political information, despite audits uncovering biases in their results, for example, towards national outlets over local ones. It is therefore important to keep in mind the potential of search results to affect public opinion. With this study, we investigate how Google search news headlines and snippets differ when varying migrant search terms (e.g., immigrant, refugee, expat). We employ computational text analysis methods as well as qualitative content analysis. Specifically, we employ an automated framework for detecting media frames, originally trained on Twitter data, and attempt to transfer it to news data; this framework allows for a categorization of data to frames of a generic-issue (economy, safety, health) and specific (hero:diversity, threat:jobs) nature. We evaluate its applicability for this novel data source and find that it performs well for frames related economy and security. Our next steps include analysing the results of other computational measures, namely, sentiment, agency and political outlet of the news item. We expect that sentiment and agency will complement the initial results we see based on media frames.</dcterms:abstract> </rdf:Description> </rdf:RDF>