Publikation: Surface acoustic wave driven ferromagnetic resonance in nickel thin films : Theory and experiment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present an extensive experimental and theoretical study of surface acoustic wave driven ferromagnetic resonance. In a first modeling approach based on the Landau-Lifshitz-Gilbert equation, we derive expressions for the magnetization dynamics upon magnetoelastic driving that are used to calculate the absorbed microwave power upon magnetic resonance as well as the spin-current density generated by the precessing magnetization in the vicinity of a ferromagnet/normal metal interface. In a second modeling approach, we deal with the backaction of the magnetization dynamics on the elastic wave by solving the elastic wave equation and the Landau-Lifshitz-Gilbert equation self-consistently, obtaining analytical solutions for the acoustic wave phase shift and attenuation. We compare both modeling approaches with the complex forward transmission of a LiNbO3/Ni surface acoustic wave hybrid device recorded experimentally as a function of the external magnetic field orientation and magnitude, rotating the field within three different planes and employing three different surface acoustic wave frequencies. We find quantitative agreement of the experimentally observed power absorption and surface acoustic wave phase shift with our modeling predictions using one set of parameters for all field configurations and frequencies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DREHER, Lukas, Mathias WEILER, Matthias PERNPEINTNER, Hans HUEBL, Rudolf GROSS, Martin S. BRANDT, Sebastian T. B. GOENNENWEIN, 2012. Surface acoustic wave driven ferromagnetic resonance in nickel thin films : Theory and experiment. In: Physical Review B. American Physical Society (APS). 2012, 86(13), 134415. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.86.134415BibTex
@article{Dreher2012-07-31T08:05:13ZSurfa-52444, year={2012}, doi={10.1103/PhysRevB.86.134415}, title={Surface acoustic wave driven ferromagnetic resonance in nickel thin films : Theory and experiment}, number={13}, volume={86}, issn={2469-9950}, journal={Physical Review B}, author={Dreher, Lukas and Weiler, Mathias and Pernpeintner, Matthias and Huebl, Hans and Gross, Rudolf and Brandt, Martin S. and Goennenwein, Sebastian T. B.}, note={Erratum: https://doi.org/10.1103/PhysRevB.98.099901 Article Number: 134415} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52444"> <dcterms:title>Surface acoustic wave driven ferromagnetic resonance in nickel thin films : Theory and experiment</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Pernpeintner, Matthias</dc:creator> <dc:creator>Huebl, Hans</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Brandt, Martin S.</dc:contributor> <dc:contributor>Gross, Rudolf</dc:contributor> <dc:contributor>Weiler, Mathias</dc:contributor> <dc:creator>Weiler, Mathias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Pernpeintner, Matthias</dc:contributor> <dc:creator>Dreher, Lukas</dc:creator> <dc:contributor>Goennenwein, Sebastian T. B.</dc:contributor> <dc:creator>Brandt, Martin S.</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Gross, Rudolf</dc:creator> <dc:contributor>Dreher, Lukas</dc:contributor> <dc:creator>Goennenwein, Sebastian T. B.</dc:creator> <dcterms:abstract xml:lang="eng">We present an extensive experimental and theoretical study of surface acoustic wave driven ferromagnetic resonance. In a first modeling approach based on the Landau-Lifshitz-Gilbert equation, we derive expressions for the magnetization dynamics upon magnetoelastic driving that are used to calculate the absorbed microwave power upon magnetic resonance as well as the spin-current density generated by the precessing magnetization in the vicinity of a ferromagnet/normal metal interface. In a second modeling approach, we deal with the backaction of the magnetization dynamics on the elastic wave by solving the elastic wave equation and the Landau-Lifshitz-Gilbert equation self-consistently, obtaining analytical solutions for the acoustic wave phase shift and attenuation. We compare both modeling approaches with the complex forward transmission of a LiNbO<sub>3</sub>/Ni surface acoustic wave hybrid device recorded experimentally as a function of the external magnetic field orientation and magnitude, rotating the field within three different planes and employing three different surface acoustic wave frequencies. We find quantitative agreement of the experimentally observed power absorption and surface acoustic wave phase shift with our modeling predictions using one set of parameters for all field configurations and frequencies.</dcterms:abstract> <dcterms:issued>2012-07-31T08:05:13Z</dcterms:issued> <dc:contributor>Huebl, Hans</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T08:01:26Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52444"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T08:01:26Z</dc:date> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>