Publikation: Heat dissipation in atomic-scale junctions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LEE, Woochul, Kyeongtae KIM, Wonho JEONG, Linda Angela ZOTTI, Fabian PAULY, Juan Carlos CUEVAS, Pramod REDDY, 2013. Heat dissipation in atomic-scale junctions. In: Nature. 2013, 498(7453), pp. 209-212. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/nature12183BibTex
@article{Lee2013-06-13dissi-24184, year={2013}, doi={10.1038/nature12183}, title={Heat dissipation in atomic-scale junctions}, number={7453}, volume={498}, issn={0028-0836}, journal={Nature}, pages={209--212}, author={Lee, Woochul and Kim, Kyeongtae and Jeong, Wonho and Zotti, Linda Angela and Pauly, Fabian and Cuevas, Juan Carlos and Reddy, Pramod} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24184"> <dc:contributor>Lee, Woochul</dc:contributor> <dcterms:abstract>Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24184/2/Lee_241848.pdf"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Reddy, Pramod</dc:contributor> <dcterms:issued>2013-06-13</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24184"/> <dc:creator>Jeong, Wonho</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24184/2/Lee_241848.pdf"/> <dc:creator>Kim, Kyeongtae</dc:creator> <dc:contributor>Jeong, Wonho</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Zotti, Linda Angela</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-31T13:40:17Z</dc:date> <dc:creator>Pauly, Fabian</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Zotti, Linda Angela</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-31T13:40:17Z</dcterms:available> <dc:creator>Cuevas, Juan Carlos</dc:creator> <dc:contributor>Cuevas, Juan Carlos</dc:contributor> <dc:creator>Reddy, Pramod</dc:creator> <dc:contributor>Pauly, Fabian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:bibliographicCitation>Nature ; 498 (2013), 7453. - S. 209-212</dcterms:bibliographicCitation> <dcterms:title>Heat dissipation in atomic-scale junctions</dcterms:title> <dc:contributor>Kim, Kyeongtae</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Lee, Woochul</dc:creator> </rdf:Description> </rdf:RDF>