Robust Generalization despite Distribution Shift via Minimum Discriminating Information

Lade...
Vorschaubild
Dateien
Sutter_2-1xj3srksc8qh88.PDF
Sutter_2-1xj3srksc8qh88.PDFGröße: 428.91 KBDownloads: 2
Datum
2021
Autor:innen
Krause, Andreas
Kuhn, Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
RANZATO, Marc'Aurelio, Hrsg., Alina BEYGELZIMER, Hrsg., Yann DAUPHIN, Hrsg. und andere. Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021). San Diego, CA: Neural Information Processing Systems Foundation, 2021
Zusammenfassung

Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
NeurIPS 2021 : 35th Conference on Neural Information Processing Systems (online), 6. Dez. 2021 - 14. Dez. 2021
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SUTTER, Tobias, Andreas KRAUSE, Daniel KUHN, 2021. Robust Generalization despite Distribution Shift via Minimum Discriminating Information. NeurIPS 2021 : 35th Conference on Neural Information Processing Systems (online), 6. Dez. 2021 - 14. Dez. 2021. In: RANZATO, Marc'Aurelio, Hrsg., Alina BEYGELZIMER, Hrsg., Yann DAUPHIN, Hrsg. und andere. Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021). San Diego, CA: Neural Information Processing Systems Foundation, 2021
BibTex
@inproceedings{Sutter2021Robus-55736,
  year={2021},
  title={Robust Generalization despite Distribution Shift via Minimum Discriminating Information},
  url={https://proceedings.neurips.cc/paper/2021/hash/f86890095c957e9b949d11d15f0d0cd5-Abstract.html},
  publisher={Neural Information Processing Systems Foundation},
  address={San Diego, CA},
  booktitle={Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)},
  editor={Ranzato, Marc'Aurelio and Beygelzimer, Alina and Dauphin, Yann},
  author={Sutter, Tobias and Krause, Andreas and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55736">
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55736"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Krause, Andreas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:27:08Z</dcterms:available>
    <dc:creator>Sutter, Tobias</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dcterms:title>Robust Generalization despite Distribution Shift via Minimum Discriminating Information</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55736/1/Sutter_2-1xj3srksc8qh88.PDF"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55736/1/Sutter_2-1xj3srksc8qh88.PDF"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:27:08Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Krause, Andreas</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen