Robust Generalization despite Distribution Shift via Minimum Discriminating Information
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SUTTER, Tobias, Andreas KRAUSE, Daniel KUHN, 2021. Robust Generalization despite Distribution Shift via Minimum Discriminating Information. NeurIPS 2021 : 35th Conference on Neural Information Processing Systems (online), 6. Dez. 2021 - 14. Dez. 2021. In: RANZATO, Marc'Aurelio, Hrsg., Alina BEYGELZIMER, Hrsg., Yann DAUPHIN, Hrsg. und andere. Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021). San Diego, CA: Neural Information Processing Systems Foundation, 2021BibTex
@inproceedings{Sutter2021Robus-55736, year={2021}, title={Robust Generalization despite Distribution Shift via Minimum Discriminating Information}, url={https://proceedings.neurips.cc/paper/2021/hash/f86890095c957e9b949d11d15f0d0cd5-Abstract.html}, publisher={Neural Information Processing Systems Foundation}, address={San Diego, CA}, booktitle={Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)}, editor={Ranzato, Marc'Aurelio and Beygelzimer, Alina and Dauphin, Yann}, author={Sutter, Tobias and Krause, Andreas and Kuhn, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55736"> <dc:contributor>Kuhn, Daniel</dc:contributor> <dc:creator>Kuhn, Daniel</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55736"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Krause, Andreas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:27:08Z</dcterms:available> <dc:creator>Sutter, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Sutter, Tobias</dc:contributor> <dcterms:title>Robust Generalization despite Distribution Shift via Minimum Discriminating Information</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <dcterms:abstract xml:lang="eng">Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55736/1/Sutter_2-1xj3srksc8qh88.PDF"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55736/1/Sutter_2-1xj3srksc8qh88.PDF"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:27:08Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Krause, Andreas</dc:contributor> </rdf:Description> </rdf:RDF>