Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis
Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis
Loading...
Date
2018
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). - Piscataway, NJ : IEEE, 2018. - pp. 148-156. - ISBN 978-1-5386-9194-6
Abstract
The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), Oct 17, 2018 - Oct 19, 2018, Konstanz, Germany
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
STEIN, Manuel, Thorsten BREITKREUTZ, Johannes HÄUSSLER, Daniel SEEBACHER, Christoph NIEDERBERGER, Tobias SCHRECK, Michael GROSSNIKLAUS, Daniel A. KEIM, Halldor JANETZKO, 2018. Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, Germany, Oct 17, 2018 - Oct 19, 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ:IEEE, pp. 148-156. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534022BibTex
@inproceedings{Stein2018-10Revea-44389, year={2018}, doi={10.1109/BDVA.2018.8534022}, title={Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis}, isbn={978-1-5386-9194-6}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)}, pages={148--156}, author={Stein, Manuel and Breitkreutz, Thorsten and Häußler, Johannes and Seebacher, Daniel and Niederberger, Christoph and Schreck, Tobias and Grossniklaus, Michael and Keim, Daniel A. and Janetzko, Halldor} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44389"> <dc:language>eng</dc:language> <dcterms:title>Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44389/1/Stein_2-1xlyopkg7x3vz6.pdf"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:creator>Niederberger, Christoph</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:43:25Z</dc:date> <dc:contributor>Breitkreutz, Thorsten</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44389"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:43:25Z</dcterms:available> <dc:creator>Häußler, Johannes</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Janetzko, Halldor</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Häußler, Johannes</dc:contributor> <dcterms:abstract xml:lang="eng">The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Niederberger, Christoph</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44389/1/Stein_2-1xlyopkg7x3vz6.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Breitkreutz, Thorsten</dc:creator> <dc:creator>Seebacher, Daniel</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Stein, Manuel</dc:creator> <dc:contributor>Stein, Manuel</dc:contributor> <dcterms:issued>2018-10</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes