Publikation: Ignoramus, Ignorabimus? : On Uncertainty in Ecological Inference
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimates and predictions. The amount of bias, however, cannot be assessed without information that is unavailable in typical applications of EI. We therefore construct a model that at least approximately accounts for the additional, nonsampling error that may result from possible bias incurred by an EI procedure, a model that builds on the Principle of Maximum Entropy. By means of a systematic simulation experiment, we examine the performance of prediction intervals based on this second-stage Maximum Entropy model. The results of this simulation study suggest that these prediction intervals are at least approximately correct if all possible configurations of the unknown data are taken into account. Finally, we apply our method to a real-world example, where we actually know the true values and are able to assess the performance of our method: the prediction of district-level percentages of split-ticket voting in the 1996 General Election of New Zealand. It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-ticket votes lies inside the 95% prediction intervals constructed by our method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ELFF, Martin, Thomas GSCHWEND, Ron J. JOHNSTON, 2007. Ignoramus, Ignorabimus? : On Uncertainty in Ecological Inference. In: Political Analysis. 2007, 16(1), pp. 70-92. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpm030BibTex
@article{Elff2007Ignor-22286, year={2007}, doi={10.1093/pan/mpm030}, title={Ignoramus, Ignorabimus? : On Uncertainty in Ecological Inference}, number={1}, volume={16}, issn={1047-1987}, journal={Political Analysis}, pages={70--92}, author={Elff, Martin and Gschwend, Thomas and Johnston, Ron J.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22286"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-01T09:13:38Z</dcterms:available> <dcterms:title>Ignoramus, Ignorabimus? : On Uncertainty in Ecological Inference</dcterms:title> <dc:contributor>Gschwend, Thomas</dc:contributor> <dc:contributor>Johnston, Ron J.</dc:contributor> <dcterms:issued>2007</dcterms:issued> <dcterms:abstract xml:lang="eng">Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimates and predictions. The amount of bias, however, cannot be assessed without information that is unavailable in typical applications of EI. We therefore construct a model that at least approximately accounts for the additional, nonsampling error that may result from possible bias incurred by an EI procedure, a model that builds on the Principle of Maximum Entropy. By means of a systematic simulation experiment, we examine the performance of prediction intervals based on this second-stage Maximum Entropy model. The results of this simulation study suggest that these prediction intervals are at least approximately correct if all possible configurations of the unknown data are taken into account. Finally, we apply our method to a real-world example, where we actually know the true values and are able to assess the performance of our method: the prediction of district-level percentages of split-ticket voting in the 1996 General Election of New Zealand. It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-ticket votes lies inside the 95% prediction intervals constructed by our method.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Political Analysis ; 16 (2008), 1. - S. 70-92</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-01T09:13:38Z</dc:date> <dc:creator>Elff, Martin</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22286"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Gschwend, Thomas</dc:creator> <dc:contributor>Elff, Martin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Johnston, Ron J.</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>