Publikation: EmbryoNet : using deep learning to link embryonic phenotypes to signaling pathways
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Evolutionarily conserved signaling pathways are essential for early embryogenesis, and reducing or abolishing their activity leads to characteristic developmental defects. Classification of phenotypic defects can identify the underlying signaling mechanisms, but this requires expert knowledge and the classification schemes have not been standardized. Here we use a machine learning approach for automated phenotyping to train a deep convolutional neural network, EmbryoNet, to accurately identify zebrafish signaling mutants in an unbiased manner. Combined with a model of time-dependent developmental trajectories, this approach identifies and classifies with high precision phenotypic defects caused by loss of function of the seven major signaling pathways relevant for vertebrate development. Our classification algorithms have wide applications in developmental biology and robustly identify signaling defects in evolutionarily distant species. Furthermore, using automated phenotyping in high-throughput drug screens, we show that EmbryoNet can resolve the mechanism of action of pharmaceutical substances. As part of this work, we freely provide more than 2 million images that were used to train and test EmbryoNet.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAPEK, Daniel, Matvey SAFROSHKIN, Hernán MORALES-NAVARRETE, Nikan TOULANY, Grigory ARUTYUNOV, Anica KURZBACH, Johanna BIHLER, Julia HAGAUER, Ben JORDAN, Patrick MÜLLER, 2023. EmbryoNet : using deep learning to link embryonic phenotypes to signaling pathways. In: Nature Methods. Springer. 2023, 20, pp. 815-823. ISSN 1548-7091. eISSN 1548-7105. Available under: doi: 10.1038/s41592-023-01873-4BibTex
@article{Capek2023-05-08Embry-67064, year={2023}, doi={10.1038/s41592-023-01873-4}, title={EmbryoNet : using deep learning to link embryonic phenotypes to signaling pathways}, volume={20}, issn={1548-7091}, journal={Nature Methods}, pages={815--823}, author={Capek, Daniel and Safroshkin, Matvey and Morales-Navarrete, Hernán and Toulany, Nikan and Arutyunov, Grigory and Kurzbach, Anica and Bihler, Johanna and Hagauer, Julia and Jordan, Ben and Müller, Patrick} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67064"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-05T14:11:31Z</dcterms:available> <dc:creator>Toulany, Nikan</dc:creator> <dc:creator>Arutyunov, Grigory</dc:creator> <dcterms:issued>2023-05-08</dcterms:issued> <dc:contributor>Morales-Navarrete, Hernán</dc:contributor> <dc:creator>Jordan, Ben</dc:creator> <dc:creator>Müller, Patrick</dc:creator> <dc:creator>Kurzbach, Anica</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <dc:contributor>Capek, Daniel</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67064"/> <dcterms:title>EmbryoNet : using deep learning to link embryonic phenotypes to signaling pathways</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hagauer, Julia</dc:creator> <dc:contributor>Bihler, Johanna</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67064/1/Capek_2-1xp3ftm28rrew5.pdf"/> <dcterms:abstract>Evolutionarily conserved signaling pathways are essential for early embryogenesis, and reducing or abolishing their activity leads to characteristic developmental defects. Classification of phenotypic defects can identify the underlying signaling mechanisms, but this requires expert knowledge and the classification schemes have not been standardized. Here we use a machine learning approach for automated phenotyping to train a deep convolutional neural network, EmbryoNet, to accurately identify zebrafish signaling mutants in an unbiased manner. Combined with a model of time-dependent developmental trajectories, this approach identifies and classifies with high precision phenotypic defects caused by loss of function of the seven major signaling pathways relevant for vertebrate development. Our classification algorithms have wide applications in developmental biology and robustly identify signaling defects in evolutionarily distant species. Furthermore, using automated phenotyping in high-throughput drug screens, we show that EmbryoNet can resolve the mechanism of action of pharmaceutical substances. As part of this work, we freely provide more than 2 million images that were used to train and test EmbryoNet.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Kurzbach, Anica</dc:contributor> <dc:contributor>Müller, Patrick</dc:contributor> <dc:contributor>Hagauer, Julia</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67064/1/Capek_2-1xp3ftm28rrew5.pdf"/> <dc:creator>Bihler, Johanna</dc:creator> <dc:creator>Capek, Daniel</dc:creator> <dc:contributor>Toulany, Nikan</dc:contributor> <dc:contributor>Safroshkin, Matvey</dc:contributor> <dc:creator>Safroshkin, Matvey</dc:creator> <dc:creator>Morales-Navarrete, Hernán</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-05T14:11:31Z</dc:date> <dc:contributor>Arutyunov, Grigory</dc:contributor> <dc:contributor>Jordan, Ben</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>