Publikation:

Self-organized collective decision making : the weighted voter model

Lade...
Vorschaubild

Dateien

Valentini_2-1xw4t9op9ruq59.pdf
Valentini_2-1xw4t9op9ruq59.pdfGröße: 469.63 KBDownloads: 12

Datum

2014

Autor:innen

Valentini, Gabriele
Dorigo, Marco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BAZZAN, Ana, ed., Michael HUHNS, ed. and others. AAMAS '14 : Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. New York, NY: ACM, 2014, pp. 45-52. ISBN 978-1-4503-2738-1. Available under: doi: 10.5555/2615731.2615742

Zusammenfassung

Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

AAMAS '14 : 2014 international conference on autonomous agents and multi-agent systems, 5. Mai 2014 - 9. Mai 2014, Paris, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VALENTINI, Gabriele, Heiko HAMANN, Marco DORIGO, 2014. Self-organized collective decision making : the weighted voter model. AAMAS '14 : 2014 international conference on autonomous agents and multi-agent systems. Paris, France, 5. Mai 2014 - 9. Mai 2014. In: BAZZAN, Ana, ed., Michael HUHNS, ed. and others. AAMAS '14 : Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. New York, NY: ACM, 2014, pp. 45-52. ISBN 978-1-4503-2738-1. Available under: doi: 10.5555/2615731.2615742
BibTex
@inproceedings{Valentini2014-05-05Selfo-59911,
  year={2014},
  doi={10.5555/2615731.2615742},
  title={Self-organized collective decision making : the weighted voter model},
  url={https://dl.acm.org/doi/10.5555/2615731.2615742},
  isbn={978-1-4503-2738-1},
  publisher={ACM},
  address={New York, NY},
  booktitle={AAMAS '14 : Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems},
  pages={45--52},
  editor={Bazzan, Ana and Huhns, Michael},
  author={Valentini, Gabriele and Hamann, Heiko and Dorigo, Marco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59911">
    <dc:creator>Dorigo, Marco</dc:creator>
    <dc:contributor>Dorigo, Marco</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T10:28:24Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Valentini, Gabriele</dc:creator>
    <dcterms:issued>2014-05-05</dcterms:issued>
    <dc:contributor>Valentini, Gabriele</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T10:28:24Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59911/1/Valentini_2-1xw4t9op9ruq59.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59911/1/Valentini_2-1xw4t9op9ruq59.pdf"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:title>Self-organized collective decision making : the weighted voter model</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59911"/>
    <dcterms:abstract xml:lang="eng">Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2023-01-16

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen