Publikation: Self-organized collective decision making : the weighted voter model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VALENTINI, Gabriele, Heiko HAMANN, Marco DORIGO, 2014. Self-organized collective decision making : the weighted voter model. AAMAS '14 : 2014 international conference on autonomous agents and multi-agent systems. Paris, France, 5. Mai 2014 - 9. Mai 2014. In: BAZZAN, Ana, ed., Michael HUHNS, ed. and others. AAMAS '14 : Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. New York, NY: ACM, 2014, pp. 45-52. ISBN 978-1-4503-2738-1. Available under: doi: 10.5555/2615731.2615742BibTex
@inproceedings{Valentini2014-05-05Selfo-59911, year={2014}, doi={10.5555/2615731.2615742}, title={Self-organized collective decision making : the weighted voter model}, url={https://dl.acm.org/doi/10.5555/2615731.2615742}, isbn={978-1-4503-2738-1}, publisher={ACM}, address={New York, NY}, booktitle={AAMAS '14 : Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems}, pages={45--52}, editor={Bazzan, Ana and Huhns, Michael}, author={Valentini, Gabriele and Hamann, Heiko and Dorigo, Marco} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59911"> <dc:creator>Dorigo, Marco</dc:creator> <dc:contributor>Dorigo, Marco</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T10:28:24Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Valentini, Gabriele</dc:creator> <dcterms:issued>2014-05-05</dcterms:issued> <dc:contributor>Valentini, Gabriele</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T10:28:24Z</dcterms:available> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59911/1/Valentini_2-1xw4t9op9ruq59.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59911/1/Valentini_2-1xw4t9op9ruq59.pdf"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:title>Self-organized collective decision making : the weighted voter model</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59911"/> <dcterms:abstract xml:lang="eng">Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.</dcterms:abstract> </rdf:Description> </rdf:RDF>