Publikation:

Improving Multi-Label Classification by Means of Cross-Ontology Association Rules

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BERGMANN, Ralph, ed. and others. Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. 2015, pp. 80-91. CEUR workshop proceedings. 1458. ISSN 1613-0073

Zusammenfassung

Recently several methods were proposed for the improvement of multi-label classi cation performance by using constraints on labels. Such constraints are based on dependencies between classes often present in multi-label data and can be mined as association rules from training data. The rules are then applied in a post-processing step to correct the classi er predictions. Due to properties of association rule mining these improvement methods often achieve low improvement expressed mostly in the better prediction of large classes. In the presence of class ontologies this is undesirable because larger classes correspond to higher levels in hierarchies presenting general concepts and can thus be trivial. In this paper we overcome the problem by focusing on improving multi-label classi cation performance on small classes. We present a new method of improvement based on mining cross-ontology association rules which is best suited for classi cation with multiple class ontologies, but can also be applied to multi-label classi cation with one class taxonomy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

LWA 2015 Workshops: KDML, FGWM, IR, FGDB, 7. Okt. 2015 - 9. Okt. 2015, Trier
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. Improving Multi-Label Classification by Means of Cross-Ontology Association Rules. LWA 2015 Workshops: KDML, FGWM, IR, FGDB. Trier, 7. Okt. 2015 - 9. Okt. 2015. In: BERGMANN, Ralph, ed. and others. Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. 2015, pp. 80-91. CEUR workshop proceedings. 1458. ISSN 1613-0073
BibTex
@inproceedings{Benites2015Impro-33194,
  year={2015},
  title={Improving Multi-Label Classification by Means of Cross-Ontology Association Rules},
  number={1458},
  issn={1613-0073},
  series={CEUR workshop proceedings},
  booktitle={Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB},
  pages={80--91},
  editor={Bergmann, Ralph},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33194">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33194"/>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-02T11:14:49Z</dc:date>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Improving Multi-Label Classification by Means of Cross-Ontology Association Rules</dcterms:title>
    <dcterms:abstract xml:lang="eng">Recently several methods were proposed for the improvement of multi-label classi cation performance by using constraints on labels. Such constraints are based on dependencies between classes often present in multi-label data and can be mined as association rules from training data. The rules are then applied in a post-processing step to correct the classi er predictions. Due to properties of association rule mining these improvement methods often achieve low improvement expressed mostly in the better prediction of large classes. In the presence of class ontologies this is undesirable because larger classes correspond to higher levels in hierarchies presenting general concepts and can thus be trivial. In this paper we overcome the problem by focusing on improving multi-label classi cation performance on small classes. We present a new method of improvement based on mining cross-ontology association rules which is best suited for classi cation with multiple class ontologies, but can also be applied to multi-label classi cation with one class taxonomy.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-02T11:14:49Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen