Publikation:

Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels

Lade...
Vorschaubild

Dateien

Goertler_2-1xpfvhkvg89m35.pdf
Goertler_2-1xpfvhkvg89m35.pdfGröße: 2.62 MBDownloads: 86

Datum

2022

Autor:innen

Hohman, Fred
Moritz, Dominik
Wongsuphasawat, Kanit
Ren, Donghao
Nair, Rahul
Kirchner, Marc
Patel, Kayur

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2022. Available under: doi: 10.1145/3491102.3501823

Zusammenfassung

The confusion matrix, a ubiquitous visualization for helping people evaluate machine learning models, is a tabular layout that compares predicted class labels against actual class labels over all data instances. We conduct formative research with machine learning practitioners at Apple and find that conventional confusion matrices do not support more complex data-structures found in modern-day applications, such as hierarchical and multi-output labels. To express such variations of confusion matrices, we design an algebra that models confusion matrices as probability distributions. Based on this algebra, we develop Neo, a visual analytics system that enables practitioners to flexibly author and interact with hierarchical and multi-output confusion matrices, visualize derived metrics, renormalize confusions, and share matrix specifications. Finally, we demonstrate Neo’s utility with three model evaluation scenarios that help people better understand model performance and reveal hidden confusions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Confusion matrices, model evaluation, visual analytics, machine learning, interactive systems

Konferenz

CHI '22: CHI Conference on Human Factors in Computing Systems, 29. Apr. 2022 - 5. Mai 2022, New Orleans, LA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÖRTLER, Jochen, Fred HOHMAN, Dominik MORITZ, Kanit WONGSUPHASAWAT, Donghao REN, Rahul NAIR, Marc KIRCHNER, Kayur PATEL, 2022. Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels. CHI '22: CHI Conference on Human Factors in Computing Systems. New Orleans, LA, USA, 29. Apr. 2022 - 5. Mai 2022. In: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2022. Available under: doi: 10.1145/3491102.3501823
BibTex
@inproceedings{Gortler2022-04-29Gener-67655,
  year={2022},
  doi={10.1145/3491102.3501823},
  title={Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels},
  publisher={ACM},
  address={New York, NY, USA},
  booktitle={CHI Conference on Human Factors in Computing Systems},
  author={Görtler, Jochen and Hohman, Fred and Moritz, Dominik and Wongsuphasawat, Kanit and Ren, Donghao and Nair, Rahul and Kirchner, Marc and Patel, Kayur}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67655">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Moritz, Dominik</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67655/1/Goertler_2-1xpfvhkvg89m35.pdf"/>
    <dc:contributor>Moritz, Dominik</dc:contributor>
    <dc:contributor>Wongsuphasawat, Kanit</dc:contributor>
    <dc:creator>Hohman, Fred</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67655"/>
    <dc:contributor>Nair, Rahul</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T09:07:49Z</dcterms:available>
    <dcterms:issued>2022-04-29</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels</dcterms:title>
    <dc:creator>Patel, Kayur</dc:creator>
    <dc:contributor>Ren, Donghao</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Wongsuphasawat, Kanit</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ren, Donghao</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T09:07:49Z</dc:date>
    <dc:creator>Nair, Rahul</dc:creator>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dc:creator>Kirchner, Marc</dc:creator>
    <dc:contributor>Kirchner, Marc</dc:contributor>
    <dcterms:abstract>The confusion matrix, a ubiquitous visualization for helping people evaluate machine learning models, is a tabular layout that compares predicted class labels against actual class labels over all data instances. We conduct formative research with machine learning practitioners at Apple and find that conventional confusion matrices do not support more complex data-structures found in modern-day applications, such as hierarchical and multi-output labels. To express such variations of confusion matrices, we design an algebra that models confusion matrices as probability distributions. Based on this algebra, we develop Neo, a visual analytics system that enables practitioners to flexibly author and interact with hierarchical and multi-output confusion matrices, visualize derived metrics, renormalize confusions, and share matrix specifications. Finally, we demonstrate Neo’s utility with three model evaluation scenarios that help people better understand model performance and reveal hidden confusions.</dcterms:abstract>
    <dc:contributor>Hohman, Fred</dc:contributor>
    <dc:contributor>Patel, Kayur</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67655/1/Goertler_2-1xpfvhkvg89m35.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen