Publikation: Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The confusion matrix, a ubiquitous visualization for helping people evaluate machine learning models, is a tabular layout that compares predicted class labels against actual class labels over all data instances. We conduct formative research with machine learning practitioners at Apple and find that conventional confusion matrices do not support more complex data-structures found in modern-day applications, such as hierarchical and multi-output labels. To express such variations of confusion matrices, we design an algebra that models confusion matrices as probability distributions. Based on this algebra, we develop Neo, a visual analytics system that enables practitioners to flexibly author and interact with hierarchical and multi-output confusion matrices, visualize derived metrics, renormalize confusions, and share matrix specifications. Finally, we demonstrate Neo’s utility with three model evaluation scenarios that help people better understand model performance and reveal hidden confusions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GÖRTLER, Jochen, Fred HOHMAN, Dominik MORITZ, Kanit WONGSUPHASAWAT, Donghao REN, Rahul NAIR, Marc KIRCHNER, Kayur PATEL, 2022. Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels. CHI '22: CHI Conference on Human Factors in Computing Systems. New Orleans, LA, USA, 29. Apr. 2022 - 5. Mai 2022. In: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2022. Available under: doi: 10.1145/3491102.3501823BibTex
@inproceedings{Gortler2022-04-29Gener-67655, year={2022}, doi={10.1145/3491102.3501823}, title={Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels}, publisher={ACM}, address={New York, NY, USA}, booktitle={CHI Conference on Human Factors in Computing Systems}, author={Görtler, Jochen and Hohman, Fred and Moritz, Dominik and Wongsuphasawat, Kanit and Ren, Donghao and Nair, Rahul and Kirchner, Marc and Patel, Kayur} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67655"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Moritz, Dominik</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67655/1/Goertler_2-1xpfvhkvg89m35.pdf"/> <dc:contributor>Moritz, Dominik</dc:contributor> <dc:contributor>Wongsuphasawat, Kanit</dc:contributor> <dc:creator>Hohman, Fred</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67655"/> <dc:contributor>Nair, Rahul</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T09:07:49Z</dcterms:available> <dcterms:issued>2022-04-29</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Görtler, Jochen</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Neo : Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels</dcterms:title> <dc:creator>Patel, Kayur</dc:creator> <dc:contributor>Ren, Donghao</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Wongsuphasawat, Kanit</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Ren, Donghao</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T09:07:49Z</dc:date> <dc:creator>Nair, Rahul</dc:creator> <dc:contributor>Görtler, Jochen</dc:contributor> <dc:creator>Kirchner, Marc</dc:creator> <dc:contributor>Kirchner, Marc</dc:contributor> <dcterms:abstract>The confusion matrix, a ubiquitous visualization for helping people evaluate machine learning models, is a tabular layout that compares predicted class labels against actual class labels over all data instances. We conduct formative research with machine learning practitioners at Apple and find that conventional confusion matrices do not support more complex data-structures found in modern-day applications, such as hierarchical and multi-output labels. To express such variations of confusion matrices, we design an algebra that models confusion matrices as probability distributions. Based on this algebra, we develop Neo, a visual analytics system that enables practitioners to flexibly author and interact with hierarchical and multi-output confusion matrices, visualize derived metrics, renormalize confusions, and share matrix specifications. Finally, we demonstrate Neo’s utility with three model evaluation scenarios that help people better understand model performance and reveal hidden confusions.</dcterms:abstract> <dc:contributor>Hohman, Fred</dc:contributor> <dc:contributor>Patel, Kayur</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67655/1/Goertler_2-1xpfvhkvg89m35.pdf"/> </rdf:Description> </rdf:RDF>