Publikation: Optimization of polynomials on compact semialgebraic sets
Lade...
Dateien
Datum
2005
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
SIAM Journal on Optimization. 2005, 15(3), pp. 805-825. ISSN 1052-6234. Available under: doi: 10.1137/S1052623403431779
Zusammenfassung
We give a short introduction to Lasserre's method for minimizing a polynomial on a compact basic closed semialgebraic set. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proof for the convergence of the optimal values of these relaxations to the minimum which is constructive and elementary. In the case that there is a unique minimizer, we prove that every sequence of nearly optimal solutions of the successive relaxations gives rise to a sequence of points converging to this minimizer.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
nonconvex optimization, positive polynomial, sum of squares, moment problem, Positivstellensatz, semidefinite programming.
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHWEIGHOFER, Markus, 2005. Optimization of polynomials on compact semialgebraic sets. In: SIAM Journal on Optimization. 2005, 15(3), pp. 805-825. ISSN 1052-6234. Available under: doi: 10.1137/S1052623403431779BibTex
@article{Schweighofer2005Optim-15647, year={2005}, doi={10.1137/S1052623403431779}, title={Optimization of polynomials on compact semialgebraic sets}, number={3}, volume={15}, issn={1052-6234}, journal={SIAM Journal on Optimization}, pages={805--825}, author={Schweighofer, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15647"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Schweighofer, Markus</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We give a short introduction to Lasserre's method for minimizing a polynomial on a compact basic closed semialgebraic set. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proof for the convergence of the optimal values of these relaxations to the minimum which is constructive and elementary. In the case that there is a unique minimizer, we prove that every sequence of nearly optimal solutions of the successive relaxations gives rise to a sequence of points converging to this minimizer.</dcterms:abstract> <dcterms:title>Optimization of polynomials on compact semialgebraic sets</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-09T11:45:01Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schweighofer, Markus</dc:creator> <dcterms:issued>2005</dcterms:issued> <dcterms:bibliographicCitation>First publ. in: SIAM Journal of Optimization 15 (2005), 3. - S. 805-825</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15647/2/convergence.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-09T11:45:01Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15647/2/convergence.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15647"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja