Publikation: Decoupling of rotation and translation at the colloidal glass transition
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): TP C07
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In dense particle systems, the coupling of rotation and translation motion becomes intricate. Here, we report the results of confocal fluorescence microscopy where simultaneous recording of translational and rotational particle trajectories from a bidisperse colloidal dispersion is achieved by spiking the samples with rotational probe particles. The latter consist of colloidal particles containing two fluorescently labeled cores suited for tracking the particle’s orientation. A comparison of the experimental data with event driven Brownian simulations gives insights into the system’s structure and dynamics close to the glass transition and sheds new light onto the translation–rotation coupling. The data show that with increasing volume fractions, translational dynamics slows down drastically, whereas rotational dynamics changes very little. We find convincing agreement between simulation and experiments, even though the simulations neglect far-field hydrodynamic interactions. An additional analysis of the glass transition following mode coupling theory works well for the structural dynamics but indicates a decoupling of the diffusion of the smaller particle species. Shear stress correlations do not decorrelate in the simulated glass states and are not affected by rotational motion.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GEIGER, John David, Niklas GRIMM, Matthias FUCHS, Andreas ZUMBUSCH, 2024. Decoupling of rotation and translation at the colloidal glass transition. In: The Journal of Chemical Physics. AIP Publishing. 2024, 161(1), 014507. ISSN 0021-9606. eISSN 1089-7690. Verfügbar unter: doi: 10.1063/5.0205459BibTex
@article{Geiger2024Decou-70429, title={Decoupling of rotation and translation at the colloidal glass transition}, year={2024}, doi={10.1063/5.0205459}, number={1}, volume={161}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Geiger, John David and Grimm, Niklas and Fuchs, Matthias and Zumbusch, Andreas}, note={Article Number: 014507} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70429"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Zumbusch, Andreas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70429/1/Geiger_2-1wrclcoc93ey11.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70429/1/Geiger_2-1wrclcoc93ey11.pdf"/> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:creator>Geiger, John David</dc:creator> <dcterms:title>Decoupling of rotation and translation at the colloidal glass transition</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-19T06:55:23Z</dcterms:available> <dc:creator>Zumbusch, Andreas</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70429"/> <dc:creator>Fuchs, Matthias</dc:creator> <dcterms:issued>2024</dcterms:issued> <dc:contributor>Geiger, John David</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-19T06:55:23Z</dc:date> <dc:creator>Grimm, Niklas</dc:creator> <dcterms:abstract>In dense particle systems, the coupling of rotation and translation motion becomes intricate. Here, we report the results of confocal fluorescence microscopy where simultaneous recording of translational and rotational particle trajectories from a bidisperse colloidal dispersion is achieved by spiking the samples with rotational probe particles. The latter consist of colloidal particles containing two fluorescently labeled cores suited for tracking the particle’s orientation. A comparison of the experimental data with event driven Brownian simulations gives insights into the system’s structure and dynamics close to the glass transition and sheds new light onto the translation–rotation coupling. The data show that with increasing volume fractions, translational dynamics slows down drastically, whereas rotational dynamics changes very little. We find convincing agreement between simulation and experiments, even though the simulations neglect far-field hydrodynamic interactions. An additional analysis of the glass transition following mode coupling theory works well for the structural dynamics but indicates a decoupling of the diffusion of the smaller particle species. Shear stress correlations do not decorrelate in the simulated glass states and are not affected by rotational motion.</dcterms:abstract> <dc:contributor>Grimm, Niklas</dc:contributor> </rdf:Description> </rdf:RDF>