Publikation:

An Adaptive Multi Objective Selection Strategy for Active Learning

Lade...
Vorschaubild

Dateien

preprint_235.pdf
preprint_235.pdfGröße: 505.95 KBDownloads: 66

Datum

2007

Autor:innen

Cebron, Nicolas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Classifying large datasets without any a-priori information poses a problem in numerous tasks. Especially in industrial environments, we often encounter diverse measurement devices and sensors that produce huge amounts of data, but we still rely on a human expert to help give the data a meaningful interpretation. As the amount of data that must be manually classified plays a critical role, we need to reduce the number of learning episodes involving human interactions as much as possible. In addition for real world applications it is fundamental to converge in a stable manner to a solution that is close to the optimal solution. We present a new self-controlled exploration/exploitation strategy to select data points to be labeled by a domain expert where the potential of each data point is computed based on a combination of its representativeness and the uncertainty of the classifier. A new Prototype Based Active Learning (PBAC) algorithm for classification is introduced. We compare the results to our previous approach and Active Learning with Support Vector Machines on several artificial and benchmark datasets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Active Learning, Data mining, Clustering

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CEBRON, Nicolas, Michael R. BERTHOLD, 2007. An Adaptive Multi Objective Selection Strategy for Active Learning
BibTex
@techreport{Cebron2007Adapt-6148,
  year={2007},
  series={Konstanzer Schriften in Mathematik und Informatik},
  title={An Adaptive Multi Objective Selection Strategy for Active Learning},
  number={235},
  author={Cebron, Nicolas and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6148">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:49Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6148/1/preprint_235.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2007</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:49Z</dc:date>
    <dcterms:title>An Adaptive Multi Objective Selection Strategy for Active Learning</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6148"/>
    <dc:creator>Cebron, Nicolas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Classifying large datasets without any a-priori information poses a problem in numerous tasks. Especially in industrial environments, we often encounter diverse measurement devices and sensors that produce huge amounts of data, but we still rely on a human expert to help give the data a meaningful interpretation. As the amount of data that must be manually classified plays a critical role, we need to reduce the number of learning episodes involving human interactions as much as possible. In addition for real world applications it is fundamental to converge in a stable manner to a solution that is close to the optimal solution. We present a new self-controlled exploration/exploitation strategy to select data points to be labeled by a domain expert where the potential of each data point is computed based on a combination of its representativeness and the uncertainty of the classifier. A new Prototype Based Active Learning (PBAC) algorithm for classification is introduced. We compare the results to our previous approach and Active Learning with Support Vector Machines on several artificial and benchmark datasets.</dcterms:abstract>
    <dc:contributor>Cebron, Nicolas</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6148/1/preprint_235.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen