Publikation: Model Order Reduction by Proper Orthogonal Decomposition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We provide an introduction to proper orthogonal decomposition (POD) model order reduction with focus on (nonlinear) parametric partial differential equations (PDEs) and (nonlinear) time-dependent PDEs, and PDE-constrained optimization with POD surrogate models as application. We cover the relation of POD and singular value decomposition, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRÄSSLE, Carmen, Michael HINZE, Stefan VOLKWEIN, 2020. Model Order Reduction by Proper Orthogonal Decomposition. In: BENNER, Peter, ed. and others. Model Order Reduction : Volume 2 Snapshot-Based Methods and Algorithms. Berlin: De Gruyter, 2020, pp. 47-96. ISBN 978-3-11-067140-7. Available under: doi: 10.1515/9783110671490-002BibTex
@incollection{Grale2020Model-44977.2, year={2020}, doi={10.1515/9783110671490-002}, title={Model Order Reduction by Proper Orthogonal Decomposition}, isbn={978-3-11-067140-7}, publisher={De Gruyter}, address={Berlin}, booktitle={Model Order Reduction : Volume 2 Snapshot-Based Methods and Algorithms}, pages={47--96}, editor={Benner, Peter}, author={Gräßle, Carmen and Hinze, Michael and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44977.2"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44977.2/1/Graessle_2-1wkqgeaowarco1.pdf"/> <dcterms:abstract xml:lang="eng">We provide an introduction to proper orthogonal decomposition (POD) model order reduction with focus on (nonlinear) parametric partial differential equations (PDEs) and (nonlinear) time-dependent PDEs, and PDE-constrained optimization with POD surrogate models as application. We cover the relation of POD and singular value decomposition, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.</dcterms:abstract> <dc:creator>Hinze, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:42:56Z</dc:date> <dc:contributor>Hinze, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:issued>2020</dcterms:issued> <dcterms:title>Model Order Reduction by Proper Orthogonal Decomposition</dcterms:title> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44977.2/1/Graessle_2-1wkqgeaowarco1.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44977.2"/> <dc:contributor>Gräßle, Carmen</dc:contributor> <dc:creator>Gräßle, Carmen</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:42:56Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>