Publikation: Inner-Model Reflection Principles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce and consider the inner-model reflection principle, which asserts that whenever a statement φ(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W⊊V. A stronger principle, the ground-model reflection principle, asserts that any such φ(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed Π2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTON, Neil, Andrés Eduardo CAICEDO, Gunter FUCHS, Joel David HAMKINS, Jonas REITZ, Ralf SCHINDLER, 2020. Inner-Model Reflection Principles. In: Studia Logica. Springer. 2020, 108(3), pp. 573-595. ISSN 0039-3215. eISSN 1572-8730. Available under: doi: 10.1007/s11225-019-09860-7BibTex
@article{Barton2020-06Inner-52643, year={2020}, doi={10.1007/s11225-019-09860-7}, title={Inner-Model Reflection Principles}, number={3}, volume={108}, issn={0039-3215}, journal={Studia Logica}, pages={573--595}, author={Barton, Neil and Caicedo, Andrés Eduardo and Fuchs, Gunter and Hamkins, Joel David and Reitz, Jonas and Schindler, Ralf} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52643"> <dc:contributor>Hamkins, Joel David</dc:contributor> <dc:creator>Reitz, Jonas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Fuchs, Gunter</dc:contributor> <dc:contributor>Reitz, Jonas</dc:contributor> <dc:contributor>Barton, Neil</dc:contributor> <dc:creator>Fuchs, Gunter</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52643/1/Barton_2-1whhsc8h44peb6.pdf"/> <dc:creator>Barton, Neil</dc:creator> <dc:creator>Schindler, Ralf</dc:creator> <dc:creator>Hamkins, Joel David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-29T14:11:14Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52643"/> <dc:creator>Caicedo, Andrés Eduardo</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2020-06</dcterms:issued> <dc:contributor>Schindler, Ralf</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-29T14:11:14Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Caicedo, Andrés Eduardo</dc:contributor> <dcterms:abstract xml:lang="eng">We introduce and consider the inner-model reflection principle, which asserts that whenever a statement φ(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W⊊V. A stronger principle, the ground-model reflection principle, asserts that any such φ(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed Π2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52643/1/Barton_2-1whhsc8h44peb6.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>Inner-Model Reflection Principles</dcterms:title> </rdf:Description> </rdf:RDF>