Publikation:

MODA : An efficient algorithm for network motif discovery in biological networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Omidi, Saeed
Masoudi-Nejad, Ali

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Genes & Genetic Systems. 2009, 84(5), pp. 385-395. ISSN 1341-7568. eISSN 1880-5779. Available under: doi: 10.1266/ggs.84.385

Zusammenfassung

In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

real-world complex networks, network motifs, subgraph isomorphism, induced and non-induced subgraphs, subgraph sampling, pattern growth approach

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OMIDI, Saeed, Falk SCHREIBER, Ali MASOUDI-NEJAD, 2009. MODA : An efficient algorithm for network motif discovery in biological networks. In: Genes & Genetic Systems. 2009, 84(5), pp. 385-395. ISSN 1341-7568. eISSN 1880-5779. Available under: doi: 10.1266/ggs.84.385
BibTex
@article{Omidi2009effic-40211,
  year={2009},
  doi={10.1266/ggs.84.385},
  title={MODA : An efficient algorithm for network motif discovery in biological networks},
  number={5},
  volume={84},
  issn={1341-7568},
  journal={Genes & Genetic Systems},
  pages={385--395},
  author={Omidi, Saeed and Schreiber, Falk and Masoudi-Nejad, Ali}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40211">
    <dcterms:issued>2009</dcterms:issued>
    <dc:creator>Omidi, Saeed</dc:creator>
    <dc:creator>Masoudi-Nejad, Ali</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40211"/>
    <dc:contributor>Omidi, Saeed</dc:contributor>
    <dc:creator>Schreiber, Falk</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>MODA : An efficient algorithm for network motif discovery in biological networks</dcterms:title>
    <dc:contributor>Masoudi-Nejad, Ali</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-30T12:25:24Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-30T12:25:24Z</dcterms:available>
    <dc:contributor>Schreiber, Falk</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen