Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an indefinite initial state. This paper attempts to view the relation between BSDEs and stochastic controls from s new perspective by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE a new stochastic control problem is introduced with the same dynamics but a definite initial state.
The martingale term in the original BSDE is regarded as the control and the objective is to minimize the second moment of the difference between the terminal state and the given terminal value. This problem is solved in a closed form by the stochastic linear-quadratic theory developed recently. The general result is then applied to the Black-Scholes model, where an optimal feedback control is obtained explicitly in terms of the option price. Finally, a modified model is investigated where the difference between the state and the expectation of the given terminal value at any time is take into account.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOHLMANN, Michael, Xun Yu ZHOU, 1999. Backward Stochastic Differential Equations and Stochastic Controls : a New PerspectiveBibTex
@techreport{Kohlmann1999Backw-730, year={1999}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective}, number={1999/09}, author={Kohlmann, Michael and Zhou, Xun Yu} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/730"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dc:date> <dc:creator>Zhou, Xun Yu</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Zhou, Xun Yu</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/730/1/318_1.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an indefinite initial state. This paper attempts to view the relation between BSDEs and stochastic controls from s new perspective by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE a new stochastic control problem is introduced with the same dynamics but a definite initial state.<br />The martingale term in the original BSDE is regarded as the control and the objective is to minimize the second moment of the difference between the terminal state and the given terminal value. This problem is solved in a closed form by the stochastic linear-quadratic theory developed recently. The general result is then applied to the Black-Scholes model, where an optimal feedback control is obtained explicitly in terms of the option price. Finally, a modified model is investigated where the difference between the state and the expectation of the given terminal value at any time is take into account.</dcterms:abstract> <dc:contributor>Kohlmann, Michael</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>1999</dcterms:issued> <dc:format>application/pdf</dc:format> <dc:creator>Kohlmann, Michael</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/730/1/318_1.pdf"/> <dcterms:title>Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/730"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>