Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective

Lade...
Vorschaubild
Dateien
318_1.pdf
318_1.pdfGröße: 249.68 KBDownloads: 268
Datum
1999
Autor:innen
Zhou, Xun Yu
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an indefinite initial state. This paper attempts to view the relation between BSDEs and stochastic controls from s new perspective by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE a new stochastic control problem is introduced with the same dynamics but a definite initial state.
The martingale term in the original BSDE is regarded as the control and the objective is to minimize the second moment of the difference between the terminal state and the given terminal value. This problem is solved in a closed form by the stochastic linear-quadratic theory developed recently. The general result is then applied to the Black-Scholes model, where an optimal feedback control is obtained explicitly in terms of the option price. Finally, a modified model is investigated where the difference between the state and the expectation of the given terminal value at any time is take into account.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Backward stochastic differential equation, stochastic control
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOHLMANN, Michael, Xun Yu ZHOU, 1999. Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective
BibTex
@techreport{Kohlmann1999Backw-730,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective},
  number={1999/09},
  author={Kohlmann, Michael and Zhou, Xun Yu}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/730">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dc:date>
    <dc:creator>Zhou, Xun Yu</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Zhou, Xun Yu</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/730/1/318_1.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an indefinite initial state. This paper attempts to view the relation between BSDEs and stochastic controls from s new perspective by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE a new stochastic control problem is introduced with the same dynamics but a definite initial state.&lt;br /&gt;The martingale term in the original BSDE is regarded as the control and the objective is to minimize the second moment of the difference between the terminal state and the given terminal value. This problem is solved in a closed form by the stochastic linear-quadratic theory developed recently. The general result is then applied to the Black-Scholes model, where an optimal feedback control is obtained explicitly in terms of the option price. Finally, a modified model is investigated where the difference between the state and the expectation of the given terminal value at any time is take into account.</dcterms:abstract>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>1999</dcterms:issued>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/730/1/318_1.pdf"/>
    <dcterms:title>Backward Stochastic Differential Equations and Stochastic Controls : a New Perspective</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/730"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen